diff --git a/DataProcess/DataProcess.py b/DataProcess/DataProcess.py index 9693a98c..d83113c3 100644 --- a/DataProcess/DataProcess.py +++ b/DataProcess/DataProcess.py @@ -312,10 +312,6 @@ def processData(self, restrictToWindfieldDomain=False): if self.ncflag: self.data['index'] = indicator - # ieast : parameter used in latLon2Azi - # FIXME: should be a config setting describing the input data. - ieast = 1 - # Determine the index of initial cyclone observations, excluding # those cyclones that have only one observation. This is used # for calculating initial bearing and speed @@ -325,7 +321,7 @@ def processData(self, restrictToWindfieldDomain=False): # Calculate the bearing and distance (km) of every two # consecutive records using ll2azi - bear_, dist_ = maputils.latLon2Azi(lat, lon, ieast, azimuth=0) + bear_, dist_ = maputils.latLon2Azi(lat, lon) assert bear_.size == indicator.size - 1 assert dist_.size == indicator.size - 1 bear = np.empty(indicator.size, 'f') diff --git a/Evaluate/interpolateTracks.py b/Evaluate/interpolateTracks.py index eb3123db..63d25268 100644 --- a/Evaluate/interpolateTracks.py +++ b/Evaluate/interpolateTracks.py @@ -201,7 +201,7 @@ def interpolate(track, delta, interpolation_type=None): nrMax = interp1d(timestep, track.rMax, kind='linear')(newtime) if len(nLat) >= 2: - bear_, dist_ = latLon2Azi(nLat, nLon, 1, azimuth=0) + bear_, dist_ = latLon2Azi(nLat, nLon) nthetaFm = np.zeros(newtime.size, dtype=float) nthetaFm[:-1] = bear_ nthetaFm[-1] = bear_[-1] diff --git a/Utilities/interpTrack.py b/Utilities/interpTrack.py index 3da0054a..f781c9a5 100644 --- a/Utilities/interpTrack.py +++ b/Utilities/interpTrack.py @@ -186,7 +186,7 @@ def interpolateTrack(configFile, trackFile, source, delta=0.1, npEnv = scint.interp1d(timestep, penv, kind='linear')(newtime) nrMax = scint.interp1d(timestep, rmax, kind='linear')(newtime) - bear_, dist_ = maputils.latLon2Azi(nLat, nLon, 1, azimuth=0) + bear_, dist_ = maputils.latLon2Azi(nLat, nLon) nthetaFm = numpy.zeros(newtime.size, 'f') nthetaFm[:-1] = bear_ nthetaFm[-1] = bear_[-1] diff --git a/Utilities/loadData.py b/Utilities/loadData.py index ea3d5521..6061fc63 100644 --- a/Utilities/loadData.py +++ b/Utilities/loadData.py @@ -152,7 +152,7 @@ def __getattr__(self, key): """ -def getSpeedBearing(index, lon, lat, deltatime, ieast=1, +def getSpeedBearing(index, lon, lat, deltatime, missingValue=sys.maxsize): """ Calculate the speed and bearing of a TC. @@ -182,7 +182,7 @@ def getSpeedBearing(index, lon, lat, deltatime, ieast=1, """ - bear_, dist_ = maputils.latLon2Azi(lat, lon, ieast, azimuth=0) + bear_, dist_ = maputils.latLon2Azi(lat, lon) assert bear_.size == index.size - 1 assert dist_.size == index.size - 1 bearing = np.zeros(index.size, 'f') @@ -649,7 +649,7 @@ def ltmPressure(jdays, time, lon, lat, ncfile, ncvar='slp'): ncobj = nctools.ncLoadFile(ncfile) if ncvar not in ncobj.variables: raise KeyError(f"{ncfile} does not contain a variable called '{ncvar}'") - + slpunits = getattr(ncobj.variables[ncvar], 'units') data = nctools.ncGetData(ncobj, ncvar) @@ -679,9 +679,9 @@ def getPoci(penv, pcentre, lat, jdays, eps, :param lat: Latitude of storm (degrees). :param jdays: Julian day (day of year). :param eps: random variate. Retained as a constant for a single storm. - :param list coeffs: Coefficients of the model. Defaults based on - Southern Hemisphere data - (IBTrACS v03r06, 1981-2014). + :param list coeffs: Coefficients of the model. Defaults based on + Southern Hemisphere data + (IBTrACS v03r06, 1981-2014). :returns: Revised estimate for the pressure of outermost closed isobar. """ @@ -700,7 +700,7 @@ def getPoci(penv, pcentre, lat, jdays, eps, assert len(penv) == len(pcentre) assert len(penv) == len(lat) assert len(penv) == len(jdays) - + poci_model = coeffs[0] + coeffs[1]*penv + coeffs[2]*pcentre \ + coeffs[3]*pcentre*pcentre + coeffs[4]*lat*lat + \ coeffs[5]*np.cos(np.pi*2*jdays/365) + eps @@ -716,9 +716,9 @@ def getPoci(penv, pcentre, lat, jdays, eps, poci_model = np.nan elif pcentre == missingValue: poci_model = np.nan - + return poci_model - + def filterPressure(pressure, inputPressureUnits='hPa', missingValue=sys.maxsize): diff --git a/Utilities/maputils.py b/Utilities/maputils.py index 61a60e97..a3f57d40 100644 --- a/Utilities/maputils.py +++ b/Utilities/maputils.py @@ -18,20 +18,22 @@ import math from . import metutils import warnings +import pyproj + try: from . import fmaputils except ImportError: - warnings.warn("Compiled maputils not found - defaulting to slower python wind models") - + warnings.warn( + "Compiled maputils not found - defaulting to slower python wind models" + ) -# C weave code disabled for now. The code speeds up the windfield interface module by ~6% but -# does not appear to work on some systems. -#from scipy import weave -#from scipy.weave import converters logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) +geodesic = pyproj.Geod(ellps="WGS84") + + def xy2r(x, y): """ Given x and y arrays, returns the distance between consecutive @@ -46,19 +48,18 @@ def xy2r(x, y): :rtype: :class:`numpy.ndarray` """ - #if len(x) != len(y): + # if len(x) != len(y): # raise ArrayMismatch, "Input array sizes do not match" return np.sqrt(x**2 + y**2) -def latLon2Azi(lat, lon, ieast=1, azimuth=0, wantdeg=True): + +def latLon2Azi(lat, lon, wantdeg=True): """ - Returns the bearing and distance (in km) between consecutive - members of the array pair (lat,lon). + Returns the forward bearing and distance (in km) between consecutive + members of the array pair (lat, lon) :param lat: Latitudes of positions. :param lon: Longitudes of positions. - :param int ieast: 1 for longitudes increasing towards East, -1 for - longitudes increasing towards West (default 1). :param float azimuth: Local coordinate system constructed with origin at latr,lonr, X axis ('North') in direction of azimuth, and Y axis such that X x Y = Z(down) @@ -66,35 +67,13 @@ def latLon2Azi(lat, lon, ieast=1, azimuth=0, wantdeg=True): :param boolean wantdeg: If ``True`` return bearings as degrees, not radians. :returns: azimuth (+ve clockwise from north) and distance (in km). - """ - #if len(lat) != len(lon): - # raise ArrayMismatch, "Input array sizes do not match" - xr = 0 - yr = 0 - - yn, xe = latLon2XY(xr, yr, lat, lon, ieast, azimuth) - length = xy2r(yn, xe) - ### for azimuth calculation use atan2 which returns - ### angle from -pi to pi. Rules for getting azimuth are: - ### 1st quadrant (yn > 0 xe > 0): 0 <= angle <= pi/2 - ### Rule -1* + pi/2 maps to: pi/2 0 - ### 2nd quadrant (yn < 0 xe > 0): -pi/2 <= angle <= 0 - ### Rule -1* + pi/2 maps to: pi pi/2 - ### 3rd quadrant (yn < 0 xe < 0): -pi <= angle <= -pi/2 - ### Rule -1* + pi/2 maps to: 3pi/2 pi - ### 4th quadrant (yn > 0 xe < 0): pi/2 <= angle <= pi - ### Rule -1* + 5pi/2 maps to: 2pi 3pi/2 - #################################################################### - angle = np.arctan2(yn, xe) # yes, in that order - bearing = [theta2bearing(i) for i in angle] - - # If bearing in degrees isexpected on return: - if wantdeg: - bearing = np.array([math.degrees(i) for i in bearing], 'f') - - return bearing, length + fwdazimuth, _, distances = geodesic.inv( + lon[:-1], lat[:-1], lon[1:], lat[1:] + ) + return fwdazimuth, distances / 1000.0 + def bear2LatLon(bearing, distance, oLon, oLat): """ @@ -109,19 +88,9 @@ def bear2LatLon(bearing, distance, oLon, oLat): :returns: new longitude and latitude (in degrees) """ - radius = 6367.0 # Earth radius (km) - oLon = math.radians(oLon) - oLat = math.radians(oLat) - bear = math.radians(bearing) - - nLat = math.asin(np.sin(oLat) * np.cos(distance / radius) + \ - np.cos(oLat) * np.sin(distance / radius) * np.cos(bear)) - aa = np.sin(bear) * np.sin(distance / radius) * np.cos(oLat) - bb = np.cos(distance / radius) - np.sin(oLat) * np.sin(nLat) - - nLon = oLon + np.arctan2(aa, bb) + lon, lat, _ = geodesic.fwd(oLon, oLat, bearing, distance * 1000) + return lon, lat - return math.degrees(nLon), math.degrees(nLat) def latLon2XY(xr, yr, lat, lon, ieast=1, azimuth=0): """ @@ -148,17 +117,14 @@ def latLon2XY(xr, yr, lat, lon, ieast=1, azimuth=0): distance between consecutive points. """ - #if len(lat) != len(lon): - # raise ArrayMismatch, "Input array sizes do not match" - - radius = 6367.0 # Earth radius (km) + radius = 6367.0 # Earth radius (km) lat = np.radians(lat) lon = np.radians(lon) # Is azimuth fixed or variable? if np.size(azimuth) == 1: - angle = np.radians(azimuth)*np.ones(lat.size - 1) + angle = np.radians(azimuth) * np.ones(lat.size - 1) else: angle = np.radians(azimuth) @@ -172,47 +138,26 @@ def latLon2XY(xr, yr, lat, lon, ieast=1, azimuth=0): return xn, ye + def distGC(lat, lon): """ - Distance based on the great circle navigation between pairs of points. - - :param lat: A pair of latitude values for the two points. - :param lon: A pair of longitude values for the two points. - - :returns: Distance (in kilometres) between the two points, based on - great circle navigation. - - Example:: - - >>> dist = distGC([-20, -40],[120,190]) - 6914.42 + Distance based on great circle navigation between pairs of points + :param lat: _description_ + :type lat: _type_ + :param lon: _description_ + :type lon: _type_ """ - radius = 6367.0 # Earth radius (km) - - lat = np.radians(lat) - lon = np.radians(lon) - - angular_distance = math.acos(math.sin(lat[0]) * math.sin(lat[1]) + \ - math.cos(lat[0]) * math.cos(lat[1]) * \ - math.cos(lon[0] - lon[1])) - - return radius*angular_distance - + return geodesic.line_lengths(lon, lat, radians=False) -def gridLatLonDist(cLon, cLat, lonArray, latArray, units=None): +def gridLatLonDistBear(cLon, cLat, lonArray, latArray): """ - Generate a grid containing the spherical earth distance + Generate a grid containing the spherical earth distance and bearing of the points defined by (lonarray, latarray) from the point defined by (clon, clat). (lonarray,latarray) and (clon,clat) are in degrees. - Returns distances in km by default, other units specified by the - 'units' kwarg. - - Based on m_lldist.m by Rich Pawlowicz (rich@ocgy.ubc.ca) - Modified by Craig Arthur 2006-11-13 - + Returns distances in km, bearing in radians :param float cLon: Longitude of the point to measure the distance from. :param float cLat: Latitude of the point to measure the distance from. @@ -220,217 +165,28 @@ def gridLatLonDist(cLon, cLat, lonArray, latArray, units=None): grid over which distances will be calculated. :param latArray: 1-d array of latitude values that will define the grid over which distances will be calculated. - :param str units: Units of distance to be returned (default is kilometre) - :returns: 2-d array containing the distance of the points defined in - ``lonArray`` and ``latArray`` from the point + :returns: 2 2-d arrays containing the bearing and distance of the points + defined in ``lonArray`` and ``latArray`` from the point (``cLon``, ``cLat``). Example:: >>> lonArray = np.arange(90.,100.,0.1) >>> latArray = np.arange(-20.,-10.,0.1) - >>> dist = gridLatLonDist( 105., -15., lonArray, latArray, 'km') - - """ - - # #CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC - # cLat_cos = 0.0 - # cLat_sin = 0.0 - # lat = empty(len(latArray), 'd') - # lon = empty(len(lonArray), 'd') - - # dLon_sin = empty(len(lonArray), 'd') - # dLat_sin = empty(len(latArray), 'd') - # lat_cos = empty(len(latArray), 'd') - - # dist = empty([len(latArray), len(lonArray)], 'd') - - # code = """ - # #include - - # double radius = 6367.0; - # double toRads = 0.017453292519943295; - - # double cLon_ = cLon; - # double cLat_ = cLat; - - # cLon_ = cLon_*toRads; - # cLat_ = cLat_*toRads; - - # cLat_cos = cos(cLat_); + >>> bearing, distance = gridLatLonDistBear( 105., -15., lonArray, latArray) - # for (int i = 0; i < NlonArray[0]; ++i) - # { - # lon(i) = lonArray(i)*toRads; - # double dLon = (lon(i) - cLon_)/2.0; - # dLon_sin(i) = sin(dLon); - # } - - # for (int i = 0; i < NlatArray[0]; ++i) - # { - # lat(i) = latArray(i)*toRads; - # lat_cos(i) = cos(lat(i)); - - # double dLat = (lat(i) - cLat_)/2.0; - # dLat_sin(i) = sin(dLat); - # } - - # for (int j = 0; j < NlatArray[0]; ++j) - # { - # for (int i = 0; i < NlonArray[0]; ++i) - # { - # double a = pow(dLat_sin(j), 2) + \ - # cLat_cos*lat_cos(j)*pow(dLon_sin(i), 2); - # double c = 2.0*atan2(sqrt(fabs(a)), sqrt(1 - a)); - - # dist(j, i) = radius*c; - # } - # } - # """ - # err = weave.inline(code, - # ['cLon', 'cLat', 'lonArray', 'latArray', 'lat', 'lon', - # 'dLon_sin', 'dLat_sin', 'lat_cos', 'dist', 'cLat_cos'], - # type_converters=converters.blitz, - # compiler = 'gcc') - # #CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC - - radius = 6367.0 - - lat = np.radians(latArray) - lon = np.radians(lonArray) - - cLon = math.radians(cLon) - cLat = math.radians(cLat) - lon_, lat_ = np.meshgrid(lon, lat) - - dLon = lon_ - cLon - dLat = lat_ - cLat - - a = np.square(np.sin(dLat / 2.0)) + \ - np.cos(cLat) * np.cos(lat_) * np.square(np.sin(dLon / 2.0)) - c = 2.0 * np.arctan2(np.sqrt(np.absolute(a)), np.sqrt(1 - a)) - dist = radius * c - - dist = metutils.convert(dist, "km", units) - - return dist - -def gridLatLonBear(cLon, cLat, lonArray, latArray): """ - Generate a grid containing the bearing of the points defined by - (lonArray,latArray) from the point defined by (cLon,cLat). - (lonArray,latArray) and (cLon,cLat) are in degrees. - Returns bearing in radians. - - :param float cLon: Longitude of the point to measure the distance from. - :param float cLat: Latitude of the point to measure the distance from. - :param lonArray: 1-d array of longitude values that will define the - grid over which distances will be calculated. - :param latArray: 1-d array of latitude values that will define the - grid over which distances will be calculated. - :returns: 2-d array containing the bearing (direction) of the points - defined in ``lonArray`` and ``latArray`` from the point - (``cLon``, ``cLat``) - - Example:: - - >>> from maputils import gridLatLonBear - >>> import numpy as np - >>> lonArray = np.arange(90.,100.,0.1) - >>> latArray = np.arange(-20.,-10.,0.1) - >>> gridLatLonBear( 105., -15., lonArray, latArray) - array([[-1.94475949, -1.94659552, -1.94845671, ..., -2.36416927, - -2.37344337, -2.38290081], - [-1.93835542, -1.94015859, -1.94198663, ..., -2.35390045, - -2.36317282, -2.37263233], - [-1.93192776, -1.93369762, -1.93549204, ..., -2.34343069, - -2.35269718, -2.36215458], - ..., - [-1.29066433, -1.28850464, -1.28632113, ..., -0.84374983, - -0.83405688, -0.82416555], - [-1.28446304, -1.28227062, -1.28005406, ..., -0.83332654, - -0.82361918, -0.813717 ], - [-1.27828819, -1.27606348, -1.27381433, ..., -0.82310335, - -0.81338586, -0.80347714]]) - - """ - - # #CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC - # lat = empty(len(latArray), 'd') - # lon = empty(len(lonArray), 'd') - - # dLon_sin = empty(len(lonArray), 'd') - # dLon_cos = empty(len(lonArray), 'd') - # lat_sin = empty(len(latArray), 'd') - # lat_cos = empty(len(latArray), 'd') - - # bearing = empty([len(latArray), len(lonArray)], 'd') - - # code = """ - # #include - - # double toRads = 0.017453292519943295; - - # double cLon_ = cLon; - # double cLat_ = cLat; - - # cLon_ = cLon_*toRads; - # cLat_ = cLat_*toRads; - - # double cLat_cos = cos(cLat_); - # double cLat_sin = sin(cLat_); - - # for (int i = 0; i < NlonArray[0]; ++i) - # { - # lon(i) = lonArray(i)*toRads; - # double dLon = lon(i) - cLon_; - # dLon_sin(i) = sin(dLon); - # dLon_cos(i) = cos(dLon); - # } - - # for (int i = 0; i < NlatArray[0]; ++i) - # { - # lat(i) = latArray(i)*toRads; - # lat_sin(i) = sin(lat(i)); - # lat_cos(i) = cos(lat(i)); - # } - - # for (int j = 0; j < NlatArray[0]; ++j) - # { - # for (int i = 0; i < NlonArray[0]; ++i) - # { - # double alpha = dLon_sin(i)*lat_cos(j); - # double beta = (cLat_cos*lat_sin(j)) - (cLat_sin*lat_cos(j)*dLon_cos(i)); - - # bearing(j, i) = atan2(alpha, beta); - # } - # } - # """ - # err = weave.inline(code, - # ['cLon', 'cLat', 'lonArray', 'latArray', 'lat', 'lon', - # 'dLon_sin', 'dLon_cos', 'lat_sin', 'lat_cos', 'bearing'], - # type_converters=converters.blitz, - # compiler = 'gcc') - # #CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC - - lat = np.radians(latArray) - lon = np.radians(lonArray) - - cLon = math.radians(cLon) - cLat = math.radians(cLat) - lon_, lat_ = np.meshgrid(lon, lat) - - dLon = lon_ - cLon - #dLat= lat_ - cLat - - alpha = np.sin(dLon) * np.cos(lat_) - beta = np.cos(cLat) * np.sin(lat_) - \ - np.sin(cLat) * np.cos(lat_) * np.cos(dLon) - - bearing = np.arctan2(alpha, beta) - - return bearing + rows, cols = len(latArray), len(lonArray) + longrid, latgrid = np.meshgrid(lonArray, latArray) + lonflat = longrid.flatten() + latflat = latgrid.flatten() + bflat, _, dflat = geodesic.inv(np.tile(cLon, len(lonflat)), + np.tile(cLat, len(lonflat)), + lonflat, latflat) + bearings = bflat.reshape(rows, cols) + distances = dflat.reshape(rows, cols) / 1000. + return np.radians(bearings), distances def bearing2theta(bearing): """ @@ -444,11 +200,12 @@ def bearing2theta(bearing): from east). """ - theta = np.pi / 2. - bearing - theta = np.mod(theta, 2.*np.pi) + theta = np.pi / 2.0 - bearing + theta = np.mod(theta, 2.0 * np.pi) return theta + def theta2bearing(theta): """ Converts a cartesian angle (in radians) to an azimuthal bearing @@ -461,13 +218,22 @@ def theta2bearing(theta): from north). """ - bearing = 2. * np.pi - (theta - np.pi / 2.) - bearing = np.mod(bearing, 2. * np.pi) + bearing = 2.0 * np.pi - (theta - np.pi / 2.0) + bearing = np.mod(bearing, 2.0 * np.pi) return bearing -def makeGrid(cLon, cLat, margin=2, resolution=0.01, minLon=None, maxLon=None, - minLat=None, maxLat=None): + +def makeGrid( + cLon, + cLat, + margin=2, + resolution=0.01, + minLon=None, + maxLon=None, + minLat=None, + maxLat=None, +): """ Generate a grid of the distance and angle of a grid of points surrounding a storm centre given the location of the storm. The @@ -487,8 +253,12 @@ def makeGrid(cLon, cLat, margin=2, resolution=0.01, minLon=None, maxLon=None, :returns: 2 2-d arrays containing the distance (km) and bearing (azimuthal) of all points in a grid from the ``cLon``, ``cLat``. """ - if (type(cLon)==list or type(cLat)==list or - type(cLon)==np.ndarray or type(cLat)==np.ndarray): + if ( + type(cLon) == list + or type(cLat) == list + or type(cLon) == np.ndarray + or type(cLat) == np.ndarray + ): raise TypeError("Input values must be scalar values") gridSize = int(resolution * 1000) @@ -515,23 +285,26 @@ def makeGrid(cLon, cLat, margin=2, resolution=0.01, minLon=None, maxLon=None, try: from ._maputils import beardist - lonArray = xGrid / 1000. - latArray = yGrid / 1000. - R = np.zeros((len(latArray), len(lonArray)), order='F') - theta = np.zeros((len(latArray), len(lonArray)), order='F') + + lonArray = xGrid / 1000.0 + latArray = yGrid / 1000.0 + R = np.zeros((len(latArray), len(lonArray)), order="F") + theta = np.zeros((len(latArray), len(lonArray)), order="F") beardist(cLon, cLat, lonArray, latArray, theta, R) R = np.ascontiguousarray(R) theta = np.ascontiguousarray(theta) except ImportError: - R = gridLatLonDist(cLon, cLat, xGrid / 1000., yGrid / 1000.) - theta = np.pi/2. - gridLatLonBear(cLon, cLat, xGrid / 1000., yGrid / 1000.) + bearing, R = gridLatLonDistBear(cLon, cLat, xGrid / 1000., yGrid / 1000.) + theta = np.pi / 2.0 - bearing np.putmask(R, R == 0, 1e-30) return R, theta -def makeGridDomain(cLon, cLat, minLon, maxLon, minLat, maxLat, - margin=2, resolution=0.01): + +def makeGridDomain( + cLon, cLat, minLon, maxLon, minLat, maxLat, margin=2, resolution=0.01 +): """ Generate a grid of the distance and angle of a grid of points across a complete model domain, given the location of the storm. @@ -551,8 +324,12 @@ def makeGridDomain(cLon, cLat, minLon, maxLon, minLat, maxLat, complete region. """ - if (type(cLon)==list or type(cLat)==list or - type(cLon)==np.ndarray or type(cLat)==np.ndarray): + if ( + type(cLon) == list + or type(cLat) == list + or type(cLon) == np.ndarray + or type(cLat) == np.ndarray + ): raise TypeError("Input values must be scalar values") gridSize = int(resolution * 1000) minLon_ = int(1000 * (minLon)) - int(1000 * margin) @@ -563,12 +340,12 @@ def makeGridDomain(cLon, cLat, minLon, maxLon, minLat, maxLat, xGrid = np.array(np.arange(minLon_, maxLon_, gridSize), dtype=int) yGrid = np.array(np.arange(minLat_, maxLat_, gridSize), dtype=int) - R = gridLatLonDist(cLon, cLat, xGrid / 1000., yGrid / 1000.) - np.putmask(R, R==0, 1e-30) - theta = np.pi / 2. - gridLatLonBear(cLon, cLat, - xGrid / 1000., yGrid / 1000.) + bearing, R = gridLatLonDistBear(cLon, cLat, xGrid / 1000., yGrid / 1000.) + theta = np.pi / 2.0 - bearing + np.putmask(R, R == 0, 1e-30) return R, theta + def meshLatLon(cLon, cLat, margin=2, resolution=0.01): """ Create a meshgrid of the longitudes and latitudes of a grid. @@ -584,8 +361,12 @@ def meshLatLon(cLon, cLat, margin=2, resolution=0.01): degrees of (``cLon``, ``cLat``). """ - if (type(cLon)==list or type(cLat)==list or - type(cLon)==np.ndarray or type(cLat)==np.ndarray): + if ( + type(cLon) == list + or type(cLat) == list + or type(cLon) == np.ndarray + or type(cLat) == np.ndarray + ): raise TypeError("Input values must be scalar values") gridSize = int(1000 * resolution) @@ -598,10 +379,10 @@ def meshLatLon(cLon, cLat, margin=2, resolution=0.01): yy = np.array(np.arange(minLat, maxLat, gridSize)) xGrid, yGrid = np.meshgrid(xx, yy) - return xGrid / 1000., yGrid / 1000. + return xGrid / 1000.0, yGrid / 1000.0 + -def meshLatLonDomain(minLon, maxLon, minLat, maxLat, - margin=2, resolution=0.01): +def meshLatLonDomain(minLon, maxLon, minLat, maxLat, margin=2, resolution=0.01): """ Create a meshgrid of the lon/lat grid across th full model domain. @@ -628,7 +409,8 @@ def meshLatLonDomain(minLon, maxLon, minLat, maxLat, yy = np.array(np.arange(minLat_, maxLat_, gridSize)) xGrid, yGrid = np.meshgrid(xx, yy) - return xGrid / 1000., yGrid / 1000. + return xGrid / 1000.0, yGrid / 1000.0 + def dist2GC(cLon1, cLat1, cLon2, cLat2, lonArray, latArray, units="km"): """ @@ -657,10 +439,10 @@ def dist2GC(cLon1, cLat1, cLon2, cLat2, lonArray, latArray, units="km"): """ # Calculate distance and bearing from first point to array of points: - dist_ = gridLatLonDist(cLon1, cLat1, lonArray, latArray, units="rad") - bear_ = gridLatLonBear(cLon1, cLat1, lonArray, latArray) + bear_, dist_ = gridLatLonDistBear(cLon1, cLat1, lonArray, latArray) + dist_ *= 0.0001570783 # Convert to radians - #bearing of the cyclone: + # bearing of the cyclone: cyc_bear_ = latLon2Azi([cLon1, cLon2], [cLat1, cLat2]) dist2GC_ = np.arcsin(np.sin(dist_) * np.sin(bear_ - cyc_bear_)) @@ -668,6 +450,7 @@ def dist2GC(cLon1, cLat1, cLon2, cLat2, lonArray, latArray, units="km"): distance = metutils.convert(dist2GC_, "rad", units) return distance + def coriolis(lat): """ Calculate the Coriolis factor (f) for a given latitude (degrees). @@ -679,11 +462,12 @@ def coriolis(lat): :returns: Coriolis factor. """ - omega = 2 * np.pi / 24. / 3600. + omega = 2 * np.pi / 24.0 / 3600.0 f = 2 * omega * np.sin(np.radians(lat)) return f + def find_index(array, value): """ Find the index of 'array' with a value closest to 'value' @@ -707,10 +491,10 @@ def find_index(array, value): if type(value) == np.ndarray or type(value) == list: raise ValueError("Value cannot be an array") - if (value > array.max()): + if value > array.max(): # Value is above the largest value in the array - return the last index: return len(array) - 1 - elif (value < array.min()): + elif value < array.min(): # Value is below minimum value in the array - return the first index: return 0 else: @@ -718,6 +502,7 @@ def find_index(array, value): idx = (abs(array - value)).argmin() return idx + def find_nearest(array, value): """ Find the closest value in 'array' to 'value' diff --git a/tests/test_maputils.py b/tests/test_maputils.py index 5092aa0f..f2ed2f46 100644 --- a/tests/test_maputils.py +++ b/tests/test_maputils.py @@ -66,13 +66,17 @@ class TestMapUtils(NumpyTestCase.NumpyTestCase): 110.2968, 110.0437, 109.7570, 109.4369, 109.0834, 108.6968, 108.2770, 107.8242, 107.3386, 106.8203, 106.2695, 105.6863, 105.0709, 104.4234]) - AZI = np.array([135.0044, 135.0175, 135.0393, 135.0699, 135.1092, 135.1574, - 135.2143, 135.2802, 135.3549, 135.4385, 135.5312, 135.6329, 135.7437, - 135.8637, 135.9930, 136.1315, 136.2795, 136.4370, 136.6041, 136.7808]) - - Dist = np.array([157.1427, 157.1068, 157.0470, 156.9633, 156.8559, 156.7248, - 156.5700, 156.3918, 156.1902, 155.9654, 155.7176, 155.4470, 155.1538, - 154.8382, 154.5004, 154.1407, 153.7595, 153.3570, 152.9336, 152.4895]) + AZI = np.array([134.81195977, 134.82952992, 134.85594569, 134.89121489, + 134.93535056, 134.98837098, 135.05029967, 135.12116539, + 135.20100215, 135.2898492 , 135.38775107, 135.4947575 , + 135.61092353, 135.73630944, 135.87098074, 136.01500822, + 136.16846789, 136.33144099, 136.50401397, 136.68627847]) + + Dist = np.array([156.89956829, 156.8761494 , 156.82932912, 156.75914243, + 156.66564185, 156.54889743, 156.40899678, 156.24604514, + 156.0601654 , 155.85149814, 155.62020174, 155.36645239, + 155.09044421, 154.79238931, 154.4725179 , 154.13107836, + 153.76833737, 153.38457998, 152.98010978, 152.55524897]) def test_ValuesXY2r(self): """Test xy2R function""" @@ -102,13 +106,14 @@ def test_GridLatLonDist(self): cLat = 1.0 lonArray = np.array([0.59297447, 0.20873497, 0.44271653, 0.36579662, 0.06680392]) latArray = np.array([0.5019297, 0.42174226, 0.23712093, 0.02745615, 0.13316245]) - expected = ma.array([[56.30400807, 64.11584285, 55.7129098, 57.32175097, 73.35094702], - [65.08411729, 71.94898913, 64.57343322, 65.9665517 , 80.28821237], - [85.4022051, 90.74293694, 85.0136491, 86.07661618, 97.4877433], - [108.56672733, 112.8162381 , 108.2613338, 109.09805046, 118.30941319], - [96.87985127, 101.61920664, 96.537498, 97.47489149, 107.6850083]]) - - dist = maputils.gridLatLonDist(cLon, cLat, lonArray, latArray) + expected = np.array( + [[ 56.03776462, 63.90794904, 55.44173653, 57.06380581, 73.19967679], + [ 64.77263753, 71.6903351 , 64.25767366, 65.66234269, 80.08427248], + [ 84.98739328, 90.3708789 , 84.59556145, 85.66743417, 97.16440531], + [108.03529882, 112.31958766, 107.72732251, 108.57108803, 117.85478246], + [ 96.40715151, 101.18493545, 96.06190664, 97.00717907, 107.29601751]]) + + _, dist = maputils.gridLatLonDistBear(cLon, cLat, lonArray, latArray) self.numpyAssertAlmostEqual(dist, expected) def test_GridLatLonBear(self): @@ -117,13 +122,14 @@ def test_GridLatLonBear(self): cLat = 1.0 lonArray = np.array([0.59297447, 0.20873497, 0.44271653, 0.36579662, 0.06680392]) latArray = np.array([0.5019297, 0.42174226, 0.23712093, 0.02745615, 0.13316245]) - expected = np.array([[2.95705149, -2.61243611, -3.0270878 , -2.87840196, -2.42573357], - [2.98217456, -2.67499093, -3.04285356, -2.91354889, -2.4986278 ], - [3.02031491, -2.77686502, -3.06664317, -2.96745336, -2.62513214], - [3.04627842, -2.85059019, -3.08275714, -3.0044598 , -2.72252399], - [3.03474017, -2.81742223, -3.07560296, -2.9879869 , -2.67812704]]) - - bear = maputils.gridLatLonBear(cLon, cLat, lonArray, latArray) + expected = np.array( + [[ 2.95583639, -2.60950496, -3.02632306, -2.87671014, -2.42240667], + [ 2.9811187 , -2.6722875 , -3.04219261, -2.91206557, -2.4954023 ], + [ 3.01950581, -2.7746216 , -3.06614006, -2.96630381, -2.62224351], + [ 3.0456401 , -2.84873923, -3.08236162, -3.00354743, -2.72002218], + [ 3.03402572, -2.81538916, -3.07515962, -2.98696825, -2.67543611]]) + + bear, _ = maputils.gridLatLonDistBear(cLon, cLat, lonArray, latArray) self.numpyAssertAlmostEqual(bear, expected) def test_Bearing(self):