forked from open-mmlab/mmdetection3d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py
69 lines (65 loc) · 2.07 KB
/
paconv_cuda_ssg_8x8_cosine_200e_s3dis_seg-3d-13class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
_base_ = [
'../_base_/datasets/s3dis_seg-3d-13class.py',
'../_base_/models/paconv_cuda_ssg.py',
'../_base_/schedules/seg_cosine_150e.py', '../_base_/default_runtime.py'
]
# data settings
class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door',
'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter')
num_points = 4096
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
use_color=True,
load_dim=6,
use_dim=[0, 1, 2, 3, 4, 5]),
dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_mask_3d=False,
with_seg_3d=True),
dict(
type='PointSegClassMapping',
valid_cat_ids=tuple(range(len(class_names))),
max_cat_id=13),
dict(
type='IndoorPatchPointSample',
num_points=num_points,
block_size=1.0,
use_normalized_coord=True,
num_try=10000,
enlarge_size=None,
min_unique_num=num_points // 4,
eps=0.0),
dict(type='NormalizePointsColor', color_mean=None),
dict(
type='GlobalRotScaleTrans',
rot_range=[0.0, 6.283185307179586], # [0, 2 * pi]
scale_ratio_range=[0.8, 1.2],
translation_std=[0, 0, 0]),
dict(
type='RandomJitterPoints',
jitter_std=[0.01, 0.01, 0.01],
clip_range=[-0.05, 0.05]),
dict(type='RandomDropPointsColor', drop_ratio=0.2),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
]
data = dict(samples_per_gpu=8, train=dict(pipeline=train_pipeline))
evaluation = dict(interval=1)
# model settings
model = dict(
decode_head=dict(
num_classes=13, ignore_index=13,
loss_decode=dict(class_weight=None)), # S3DIS doesn't use class_weight
test_cfg=dict(
num_points=4096,
block_size=1.0,
sample_rate=0.5,
use_normalized_coord=True,
batch_size=12))
# runtime settings
runner = dict(max_epochs=200)