forked from davidemerli/RL-generator-2020-2021
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerator.py
131 lines (109 loc) · 3.56 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from math import floor
from random import randint
from tqdm import tqdm
import click
def generate_batch(num):
"""
Given the number of integer, returns a random array with num elements
The first element is the sequence lenght as specified in the document
"""
return [num] + [randint(0, 255) for _ in range(num)]
class FSM:
def __init__(self, state):
self.state = state
#return output value and update current state
def getVal(self, input):
if self.state==0:
if input==0:
self.state = 0
return 0
else:
self.state = 2
return 3
if self.state==1:
if input==0:
self.state = 0
return 3
else:
self.state = 2
return 0
if self.state==2:
if input==0:
self.state = 1
return 1
else:
self.state = 3
return 2
if self.state==3:
if input==0:
self.state = 1
return 2
else:
self.state = 3
return 1
class Solver:
#store the current state
# to be more efficient calculate all possible output sequence in the constructor
def __init__(self):
self.results = []
self.state = 0
for state in range(4):
self.results.append([])
for val in range(256):
fsm= FSM(state)
self.results[state].append([self.byteSolver(fsm, val), fsm.state])
@staticmethod
def byteSolver(fsm, byte):
res = 0
for i in range(8):
bit = floor(byte/pow(2, 7-i))
byte = byte % pow(2, 7-i)
res *= 4
res += fsm.getVal(bit)
return res
#return an integer that represent the generated two bytes
def getNextValue(self, input_val):
current_state= self.state
self.state = self.results[current_state][input_val][1]
return self.results[current_state][input_val][0]
#fsm = FSM(current_state)
#res = self.byteSolver(fsm, input_val)
#self.state = fsm.state
#return res
def solve_batch(batch, solver):
"""
Given a list with a structure like
[num, BYTE_1, ..., BYTE_(num)]
returns a list of value elaborated with the given algorithm
"""
stream = batch[1:]
solver.state = 0
def equalize(byte):
temp_val = solver.getNextValue(byte)
return [floor(temp_val/256), temp_val%256]
res = []
for x in stream:
res += equalize(x)
return res
def generate_ram(num, solver):
"""
Generates ram values for a random test case
"""
batch = generate_batch(num)
solution = solve_batch(batch, solver)
return batch + solution
@click.command()
@click.option('--size', default=100, show_default=True, help='Number of tests to generate')
@click.option('--limit', default=128, show_default=True, help='Maximum input stream size')
def main(size, limit):
solver = Solver()
with open('ram_content.txt', 'w') as ram, open('test_values.txt', 'w') as readable:
for i in tqdm(range(size), desc='Generating tests', dynamic_ncols=True):
num = randint(1, limit)
test = generate_ram(num, solver)
for value in test:
ram.write(f'{value}\n')
written_ram = ' '.join([str(v) for v in test])
readable.write(f'{test[0]} bytes \t\t RAM: {written_ram}\n')
if __name__ == '__main__':
main()