-
Notifications
You must be signed in to change notification settings - Fork 0
/
Plotly_Dash_Code
115 lines (98 loc) · 5.45 KB
/
Plotly_Dash_Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
##Plotly Dash
##Open a Plotly Dash App
##Type these commands in Terminal
#wget "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/spacex_launch_dash.csv"
#wget "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/labs/module_3/spacex_dash_app.py"
##Replace spacex_dash_app.py code with Skeleton.
##Skeleton
#python3 -m pip install pandas dash
#wget "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datasets/spacex_launch_dash.csv"
#wget "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/labs/module_3/spacex_dash_app.py"
#python3 spacex_dash_app.py
# Import required libraries
import pandas as pd
import dash
from dash import html
from dash import dcc
from dash.dependencies import Input, Output
import plotly.express as px
from itertools import compress
# Read the airline data into pandas dataframe
spacex_df = pd.read_csv("spacex_launch_dash.csv")
max_payload = spacex_df['Payload Mass (kg)'].max()
min_payload = spacex_df['Payload Mass (kg)'].min()
# Create a dash application
app = dash.Dash(__name__)
# Create an app layout
app.layout = html.Div(children=[html.H1('SpaceX Launch Records Dashboard',
style={'textAlign': 'center', 'color': '#503D36',
'font-size': 40}),
# TASK 1: Add a dropdown list to enable Launch Site selection
dcc.Dropdown(id='site-dropdown',options=[
{'label':'All_sites', 'value':'ALL'},
{'label':'CCAFS LC-40', 'value':'CCAFS LC-40'},
{'label':'VAFB SLC-4E', 'value':'VAFB SLC-4E'},
{'label':'KSC LC-39A', 'value':'KSC LC-39A'},
{'label':'CCAFS SLC-40','value':'CCAFS SLC-40'},
],placeholder="Select a Launch Site",value='class',searchable=True),
# The default select value is for ALL sites
# TASK 2: Add a pie chart to show the total successful launches count for all sites
# If a specific launch site was selected, show the Success vs. Failed counts for the site
dcc.Graph(id='success-pie-chart'),
html.Br(),
html.P("Payload range (Kg):"),
# TASK 3: Add a slider to select payload range
dcc.RangeSlider(id='payload-slider',min=0,max=10000,step=1000,marks={0:'0',10000:'10000'},value=[min_payload,max_payload]),
html.Div(id='output-container-range-slider'),
# TASK 4: Add a scatter chart to show the correlation between payload and launch success
html.Div(dcc.Graph(id='success-payload-scatter-chart')),
])
# TASK 2:
# Add a callback function for `site-dropdown` as input, `success-pie-chart` as output
# Function decorator to specify function input and output
@app.callback( Output(component_id='success-pie-chart', component_property='figure'),
Input(component_id='site-dropdown', component_property='value')
)
def get_pie_chart(entered_site):
if entered_site == 'ALL':
fig = px.pie(spacex_df, values=(spacex_df.loc[spacex_df['class']==1].value_counts()), names=spacex_df['Launch Site'].loc[spacex_df['class']==1],
title='Successful Launches')
return fig
else:
fig=px.pie(spacex_df,
values=spacex_df['class'].loc[spacex_df['Launch Site']==str(entered_site)].value_counts(),
names=spacex_df['class'].unique()
)
return fig
def update_output(value):
return f'You have selected'
# TASK 4:
# Add a callback function for `site-dropdown` and `payload-slider` as inputs, `success-payload-scatter-chart` as output
@app.callback(Output(component_id='success-payload-scatter-chart', component_property='figure'),
[Input(component_id='site-dropdown', component_property='value'),
Input(component_id="payload-slider", component_property="value")]
)
def get_scatter_chart(entered_site,value):
value1=value[0]
value2=value[1]
series=spacex_df['Payload Mass (kg)'].between(value1,value2)
filtered_df=spacex_df[series.values]
if entered_site == 'ALL':
fig = px.scatter(filtered_df,
x=filtered_df['Payload Mass (kg)'],
y=filtered_df['class'],
color=filtered_df['Booster Version Category'],
title=str(value1)+' '+str(value2))
return fig
else:
fig = px.scatter(spacex_df,
x=filtered_df['Payload Mass (kg)'].loc[spacex_df['Launch Site']==str(entered_site)],
y=filtered_df['class'].loc[spacex_df['Launch Site']==str(entered_site)],
color=filtered_df['Booster Version Category'].loc[spacex_df['Launch Site']==str(entered_site)],
title=str(value1)+' '+str(value2))
return fig
# Run the app
if __name__ == '__main__':
app.run_server(debug=True)
## Run program with
#python3 spacex_dash_app.py