From 18c0d7669f60b6d1529e337051ed07d0ba003cbc Mon Sep 17 00:00:00 2001 From: vschaffn Date: Fri, 22 Nov 2024 18:00:17 +0100 Subject: [PATCH] test: add test to verify nan padding for failing chunks --- tests/test_coreg/test_base.py | 36 ++++++++++++++++++++++++++++++++++- 1 file changed, 35 insertions(+), 1 deletion(-) diff --git a/tests/test_coreg/test_base.py b/tests/test_coreg/test_base.py index 34f8529f..90636cd1 100644 --- a/tests/test_coreg/test_base.py +++ b/tests/test_coreg/test_base.py @@ -21,6 +21,7 @@ import xdem from xdem import coreg, examples, misc, spatialstats from xdem._typing import NDArrayf +from xdem.coreg import BlockwiseCoreg from xdem.coreg.base import Coreg, apply_matrix, dict_key_to_str @@ -928,7 +929,7 @@ def test_blockwise_coreg_large_gaps(self) -> None: assert stats.shape[0] < 64 # Statistics are only calculated on finite values, so all of these should be finite as well. - assert np.all(np.isfinite(stats)) + assert np.all(np.isfinite(stats) | np.isnan(stats)) # Copy the TBA DEM and set a square portion to nodata tba = self.tba.copy() @@ -952,6 +953,39 @@ def test_blockwise_coreg_large_gaps(self) -> None: assert abs(np.nanmedian(ddem_pre)) > abs(np.nanmedian(ddem_post)) # assert np.nanstd(ddem_pre) > np.nanstd(ddem_post) + def test_failed_chunks_return_nan(self) -> None: + blockwise = BlockwiseCoreg(xdem.coreg.NuthKaab(), subdivision=4) + blockwise.fit(**self.fit_params) + # Missing chunk 1 to simulate failure + blockwise._meta["step_meta"] = [meta for meta in blockwise._meta["step_meta"] if meta.get("i") != 1] + + result_df = blockwise.stats() + + # Check that chunk 1 (index 1) has NaN values for the statistics + assert np.isnan(result_df.loc[1, "inlier_count"]) + assert np.isnan(result_df.loc[1, "nmad"]) + assert np.isnan(result_df.loc[1, "median"]) + assert np.isnan(result_df.loc[1, "center_x"]) + assert np.isnan(result_df.loc[1, "center_y"]) + assert np.isnan(result_df.loc[1, "center_z"]) + assert np.isnan(result_df.loc[1, "x_off"]) + assert np.isnan(result_df.loc[1, "y_off"]) + assert np.isnan(result_df.loc[1, "z_off"]) + + def test_successful_chunks_return_values(self) -> None: + blockwise = BlockwiseCoreg(xdem.coreg.NuthKaab(), subdivision=2) + blockwise.fit(**self.fit_params) + result_df = blockwise.stats() + + # Check that the correct statistics are returned for successful chunks + assert result_df.loc[0, "inlier_count"] == blockwise._meta["step_meta"][0]["inlier_count"] + assert result_df.loc[0, "nmad"] == blockwise._meta["step_meta"][0]["nmad"] + assert result_df.loc[0, "median"] == blockwise._meta["step_meta"][0]["median"] + + assert result_df.loc[1, "inlier_count"] == blockwise._meta["step_meta"][1]["inlier_count"] + assert result_df.loc[1, "nmad"] == blockwise._meta["step_meta"][1]["nmad"] + assert result_df.loc[1, "median"] == blockwise._meta["step_meta"][1]["median"] + class TestAffineManipulation: