-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDatacoll_dataclean.py
144 lines (103 loc) · 5.44 KB
/
Datacoll_dataclean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import pandas as pd
import category_encoders as ce
import numpy as np
import warnings
def data_collection():
df1 = pd.read_csv('large_file_part1.csv')
df2 = pd.read_csv('large_file_part2.csv')
df3 = pd.read_csv('2.csv')
df4 = pd.read_csv('3.csv')
df5 = pd.read_csv('4.csv')
df6 = pd.read_csv('5.csv')
df = pd.concat([df1,df2,df3,df4,df5,df6],ignore_index=True)
return df
def outlier_handling(df):
upper_limit = df['floor_area_sqm'].mean() + 3*df['floor_area_sqm'].std()
lower_limit = df['floor_area_sqm'].mean() - 3*df['floor_area_sqm'].std()
df['floor_area_sqm'] = np.where(df['floor_area_sqm']>upper_limit,upper_limit,df['floor_area_sqm'])
df['floor_area_sqm'] = np.where(df['floor_area_sqm']<lower_limit,lower_limit,df['floor_area_sqm'])
upper_limit = df['resale_price'].mean() + 3*df['resale_price'].std()
lower_limit = df['resale_price'].mean() - 3*df['resale_price'].std()
df['resale_price'] = np.where(df['resale_price']>upper_limit,upper_limit,df['resale_price'])
df['resale_price'] = np.where(df['resale_price']<lower_limit,lower_limit,df['resale_price'])
return df
def data_extract(df):
value_counts = df["town"].value_counts()
values_list1 = value_counts.index.tolist()
value_counts = df["flat_type"].value_counts()
values_list2 = value_counts.index.tolist()
value_counts = df["block"].value_counts()
values_list3 = value_counts.index.tolist()
value_counts = df["street_name"].value_counts()
values_list4 = value_counts.index.tolist()
value_counts = df["storey_range"].value_counts()
values_list5 = value_counts.index.tolist()
value_counts = df["flat_model"].value_counts()
values_list6 = value_counts.index.tolist()
value_counts = df["lease_commence_date"].value_counts()
values_list7 = value_counts.index.tolist()
value_counts = df["trans_year"].value_counts()
values_list8 = value_counts.index.tolist()
value_counts = df["years_remaining"].value_counts()
values_list9 = value_counts.index.tolist()
return values_list1,values_list2,values_list3,values_list4,values_list5,values_list6,values_list7,values_list8,values_list9
def data_cleaning(df):
warnings.filterwarnings("ignore", category=FutureWarning, module="category_encoders")
df["trans_year"] = pd.to_datetime(df['month']).dt.year
df['years_remaining'] = 99 - (df['trans_year'] - df['lease_commence_date'])
df['years_remaining'] = df['years_remaining'].apply(lambda x: min(x, 99))
df.drop(columns=["month","remaining_lease"],inplace=True)
mappings = {'MULTI-GENERATION': 'MULTI GENERATION'}
df['flat_type'] = df['flat_type'].replace(mappings)
df['flat_model'] = df['flat_model'].str.lower()
mappings = {'improved': 'Improved',
'new generation': 'New Generation',
'model a': 'Model A',
'standard': 'Standard',
'simplified': 'Simplified',
'model a-maisonette': 'Model A-Maisonette',
'apartment': 'Apartment',
'maisonette': 'Maisonette',
'terrace': 'Terrace',
'2-room': '2 Room',
'2 room': '2 Room',
'improved-maisonette': 'Improved Maisonette',
'multi generation': 'Multi Generation',
'premium apartment': 'Premium Apartment',
'adjoined flat': 'Adjoined Flat',
'premium maisonette': 'Premium Maisonette',
'model a2': 'Model A2',
'type s1': 'Type S1',
'type s2': 'Type S2',
'dbss': 'Dbss',
'premium apartment loft': 'Premium Apartment Loft',
'3gen': '3-Gen'}
df['flat_model'] = df['flat_model'].replace(mappings)
df = outlier_handling(df)
df_min = []
for i in ['floor_area_sqm', 'resale_price','lease_commence_date','trans_year','years_remaining']:
df_min.append(min(df[i]))
df_max = []
for i in ['floor_area_sqm', 'resale_price','lease_commence_date','trans_year','years_remaining']:
df_max.append(max(df[i]))
df_mean = []
for i in ['floor_area_sqm', 'resale_price','lease_commence_date','trans_year','years_remaining']:
df_mean.append(int(df[i].mean()))
df_median = []
for i in ['floor_area_sqm', 'resale_price','lease_commence_date','trans_year','years_remaining']:
df_median.append(df[i].median())
df_mode = []
for i in ['floor_area_sqm', 'resale_price','lease_commence_date','trans_year','years_remaining']:
df_mode.append(df[i].mode()[0])
df_stddev = []
for i in ['floor_area_sqm', 'resale_price','lease_commence_date','trans_year','years_remaining']:
df_stddev.append(df[i].std())
v1,v2,v3,v4,v5,v6,v7,v8,v9 = data_extract(df)
df1 = df
encoder = ce.OrdinalEncoder(cols=[ 'town', 'flat_type','block','street_name','storey_range','flat_model','lease_commence_date','trans_year','years_remaining'])
df = encoder.fit_transform(df)
V1,V2,V3,V4,V5,V6,V7,V8,V9 = data_extract(df)
df["resale_price"] = np.log10(df["resale_price"])
return df,df_min,df_max,df_mean,df_median,df_mode,df_stddev,v1,v2,v3,v4,v5,v6,v7,v8,v9,V1,V2,V3,V4,V5,V6,V7,V8,V9,df1
a = data_collection()
a,b,c,d,e,f,g,v1,v2,v3,v4,v5,v6,v7,v8,v9,V1,V2,V3,V4,V5,V6,V7,V8,V9,df1 = data_cleaning(a)