-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLazyUDCoercionsInNormalForm.agda
507 lines (441 loc) · 15.6 KB
/
LazyUDCoercionsInNormalForm.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
module illustration.LazyUDCoercionsInNormalForm (Label : Set) where
open import equivalence-of-cast-calculi.NewLazyUDCastADT Label
renaming (negate-label×polarity to neg)
renaming (B to B̂; _⇒_ to _⇒̂_; _⊗_ to _⊗̂_)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Data.Empty using (⊥-elim)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong)
infix 99 `_
infix 100 _⇒_
infix 100 _⊗_
mutual
data CoeG : PreType → PreType → Set where
B : CoeG B̂ B̂
_⇒_ : ∀ {S1 T1 S2 T2}
→ (s : CoeS S2 S1)
→ (t : CoeS T1 T2)
→ CoeG (S1 ⇒̂ T1) (S2 ⇒̂ T2)
_⊗_ : ∀ {S1 T1 S2 T2}
→ (s : CoeS S1 S2)
→ (t : CoeS T1 T2)
→ CoeG (S1 ⊗̂ T1) (S2 ⊗̂ T2)
data CoeI : PreType → Type → Set where
⊥ : ∀ {A P Q}
→ (A⌣G : (` A) ⌣ (` P))
→ (G : Ground P)
→ (l : Label×Polarity)
→ (H : Ground Q)
→ (¬G≡H : ¬ (P ≡ Q))
→ ∀ {T}
→ CoeI A T
_,_‼ : ∀ {P Q}
→ (g : CoeG P Q)
→ (G : Ground Q)
→ CoeI P *
`_ : ∀ {P Q}
→ (g : CoeG P Q)
→ CoeI P (` Q)
data CoeS : Type → Type → Set where
id* : CoeS * *
_⁇_,_ : ∀ {P T}
→ (G : Ground P)
→ (l : Label×Polarity)
→ (i : CoeI P T)
→ CoeS * T
`_ : ∀ {P T}
→ (i : CoeI P T)
→ CoeS (` P) T
Cast : Type → Type → Set
Cast = CoeS
lem-g⌣ : ∀ {P Q} → CoeG P Q → (` P) ⌣ (` Q)
lem-g⌣ B = ⌣B
lem-g⌣ (s ⇒ t) = ⌣⇒
lem-g⌣ (s ⊗ t) = ⌣⊗
mutual
_g⨟g_ : ∀ {T1 T2 T3} → CoeG T1 T2 → CoeG T2 T3 → CoeG T1 T3
B g⨟g B = B
(s1 ⇒ t1) g⨟g (s2 ⇒ t2) = (s2 ⨟ s1) ⇒ (t1 ⨟ t2)
(s1 ⊗ t1) g⨟g (s2 ⊗ t2) = (s1 ⨟ s2) ⊗ (t1 ⨟ t2)
_g⨟i_ : ∀ {T1 T2 T3} → CoeG T1 T2 → CoeI T2 T3 → CoeI T1 T3
g g⨟i ( h , G ‼) = (g g⨟g h) , G ‼
g g⨟i (` h ) = ` (g g⨟g h)
g g⨟i ⊥ A⌣P G l H ¬P≡Q = ⊥ (⌣trans (lem-g⌣ g) A⌣P) G l H ¬P≡Q
_i⨟s_ : ∀ {T1 T2 T3} → CoeI T1 T2 → CoeS T2 T3 → CoeI T1 T3
⊥ A⌣G G l H ¬G≡H i⨟s s = ⊥ A⌣G G l H ¬G≡H
(g , G ‼) i⨟s id* = (g , G ‼)
(g , G ‼) i⨟s (H ⁇ l , i) with G ≟G H
(g , G ‼) i⨟s (H ⁇ l , i) | yes refl = g g⨟i i
(g , G ‼) i⨟s (H ⁇ l , i) | no ¬G≡H = ⊥ (lem-g⌣ g) G l H ¬G≡H
(` g) i⨟s (` i) = (g g⨟i i)
_⨟_ : ∀ {T1 T2 T3} → CoeS T1 T2 → CoeS T2 T3 → CoeS T1 T3
id* ⨟ t = t
(G ⁇ l , i) ⨟ t = G ⁇ l , (i i⨟s t)
(` i) ⨟ t = ` (i i⨟s t)
mutual
⇑* : Label×Polarity → ∀ T → Cast T *
⇑* l * = id*
⇑* l (` P) = ⇑ l P
⇑ : Label×Polarity → ∀ P → Cast (` P) *
⇑ l B̂ = ` (B , `B ‼)
⇑ l (S ⇒̂ T) = ` (⇓* (neg l) S ⇒ ⇑* l T , `⇒ ‼)
⇑ l (S ⊗̂ T) = ` (⇑* l S ⊗ ⇑* l T , `⊗ ‼)
⇓* : Label×Polarity → ∀ T → Cast * T
⇓* l * = id*
⇓* l (` P) = ⇓ l P
⇓ : Label×Polarity → ∀ P → Cast * (` P)
⇓ l B̂ = (`B ⁇ l , ` B)
⇓ l (S ⇒̂ T) = (`⇒ ⁇ l , ` ⇑* (neg l) S ⇒ (⇓* l T))
⇓ l (S ⊗̂ T) = (`⊗ ⁇ l , ` ⇓* l S ⊗ (⇓* l T))
lem-¬⌣-ground : {P Q : PreType}
→ ¬ (` P) ⌣ (` Q)
→ ¬ (ground P ≡ ground Q)
lem-¬⌣-ground {B̂} {B̂} ¬p = λ _ → ¬p ⌣B
lem-¬⌣-ground {B̂} {S ⇒̂ T} ¬p = λ ()
lem-¬⌣-ground {B̂} {S ⊗̂ T} ¬p = λ ()
lem-¬⌣-ground {S ⇒̂ T} {B̂} ¬p = λ ()
lem-¬⌣-ground {S ⇒̂ T} {S₁ ⇒̂ T₁} ¬p = λ _ → ¬p ⌣⇒
lem-¬⌣-ground {S ⇒̂ T} {S₁ ⊗̂ T₁} ¬p = λ ()
lem-¬⌣-ground {S ⊗̂ T} {B̂} ¬p = λ ()
lem-¬⌣-ground {S ⊗̂ T} {S₁ ⇒̂ T₁} ¬p = λ ()
lem-¬⌣-ground {S ⊗̂ T} {S₁ ⊗̂ T₁} ¬p = λ _ → ¬p ⌣⊗
⌈_⌉ : ∀ {T1 T2} → SrcCast T1 T2 → Cast T1 T2
⌈ * ⟹[ l ] * ⌉ = id*
⌈ * ⟹[ l ] ` Q ⌉ = ⇓ l Q
⌈ ` P ⟹[ l ] * ⌉ = ⇑ l P
⌈ ` P ⟹[ l ] ` Q ⌉ with (` P) ⌣? (` Q)
⌈ ` P ⟹[ l ] ` Q ⌉ | no ¬P⌣Q
= ` (⊥ (ground-⌣ P) (ground-Ground P) l (ground-Ground Q) (lem-¬⌣-ground ¬P⌣Q))
⌈ ` B̂ ⟹[ l ] ` B̂ ⌉ | yes ⌣B = ` (` B)
⌈ ` S1 ⇒̂ T1 ⟹[ l ] ` S2 ⇒̂ T2 ⌉ | yes ⌣⇒
= ` (` ⌈ S2 ⟹[ neg l ] S1 ⌉ ⇒ ⌈ T1 ⟹[ l ] T2 ⌉)
⌈ ` L1 ⊗̂ R1 ⟹[ l ] ` L2 ⊗̂ R2 ⌉ | yes ⌣⊗
= ` (` ⌈ L1 ⟹[ l ] L2 ⌉ ⊗ ⌈ R1 ⟹[ l ] R2 ⌉)
mutual
id : ∀ T → CoeS T T
id *
= id*
id (` P)
= ` (` id-g P)
id-g : ∀ P → CoeG P P
id-g B̂
= B
id-g (S ⇒̂ T)
= id S ⇒ id T
id-g (S ⊗̂ T)
= (id S) ⊗ (id T)
CastResult : Type → Set
CastResult T = Error Label×Polarity (Value Cast T)
⟦_⟧g : ∀ {P Q}
→ CoeG P Q
→ Value Cast (` P)
→ Value Cast (` Q)
⟦ B ⟧g v = v
⟦ s2 ⇒ t2 ⟧g (lam⟨ s1 ⇒ t1 ⟩ e E) = lam⟨ s2 ⨟ s1 ⇒ t1 ⨟ t2 ⟩ e E
⟦ s2 ⊗ t2 ⟧g (cons⟨ s1 ⊗ t1 ⟩ v u) = cons⟨ s1 ⨟ s2 ⊗ t1 ⨟ t2 ⟩ v u
⟦_⟧i : ∀ {P T}
→ CoeI P T
→ Value Cast (` P)
→ CastResult T
⟦ g , G ‼ ⟧i v = return ((dyn G) (⟦ g ⟧g v))
⟦ ` g ⟧i v = return (⟦ g ⟧g v)
⟦ ⊥ A⌣G G l H ¬G≡H ⟧i v = raise l
project : ∀ {P}
→ Ground P
→ Label×Polarity
→ Value Cast *
→ CastResult (` P)
project H l (dyn G v) with G ≟G H
project H l (dyn G v) | yes refl = return v
project H l (dyn G v) | no ¬G≡H = raise l
⟦_⟧ : ∀ {S T}
→ Cast S T
→ Value Cast S
→ CastResult T
⟦ id* ⟧ v = return v
⟦ G ⁇ l , i ⟧ v = project G l v >>= ⟦ i ⟧i
⟦ ` i ⟧ v = ⟦ i ⟧i v
mutual
g-identityˡ : ∀ {P1 P2} → (g : CoeG P1 P2) → id-g P1 g⨟g g ≡ g
g-identityˡ B = refl
g-identityˡ (s ⇒ t) rewrite identityʳ s | identityˡ t = refl
g-identityˡ (s ⊗ t) rewrite identityˡ s | identityˡ t = refl
g-identityʳ : ∀ {P1 P2} → (g : CoeG P1 P2) → g g⨟g id-g P2 ≡ g
g-identityʳ B = refl
g-identityʳ (s ⇒ t) rewrite identityˡ s | identityʳ t = refl
g-identityʳ (s ⊗ t) rewrite identityʳ s | identityʳ t = refl
i-identityʳ : ∀ {P1 P2} → (i : CoeI P1 P2) → i i⨟s id P2 ≡ i
i-identityʳ (g , G ‼) = refl
i-identityʳ (` g) rewrite g-identityʳ g = refl
i-identityʳ (⊥ A⌣G G l H ¬G≡H) = refl
identityˡ : ∀ {T1 T2} → (c : Cast T1 T2) → id T1 ⨟ c ≡ c
identityˡ id* = refl
identityˡ (G ⁇ l , i) = refl
identityˡ (` (g , G ‼)) rewrite g-identityˡ g = refl
identityˡ (` (` g)) rewrite g-identityˡ g = refl
identityˡ (` ⊥ A⌣G G l H ¬G≡H) = cong (λ □ → (` ⊥ □ G l H ¬G≡H)) (⌣unique _ _)
identityʳ : ∀ {T1 T2} → (c : Cast T1 T2) → c ⨟ id T2 ≡ c
identityʳ id* = refl
identityʳ (G ⁇ l , i) rewrite i-identityʳ i = refl
identityʳ (` i) rewrite i-identityʳ i = refl
mutual
assoc-ggg : ∀ {T1 T2 T3 T4}
→ (c1 : CoeG T1 T2)
→ (c2 : CoeG T2 T3)
→ (c3 : CoeG T3 T4)
→ (c1 g⨟g c2) g⨟g c3 ≡ c1 g⨟g (c2 g⨟g c3)
assoc-ggg B B B = refl
assoc-ggg (s1 ⇒ t1) (s2 ⇒ t2) (s3 ⇒ t3)
rewrite assoc s3 s2 s1 | assoc t1 t2 t3
= refl
assoc-ggg (s1 ⊗ t1) (s2 ⊗ t2) (s3 ⊗ t3)
rewrite assoc s1 s2 s3 | assoc t1 t2 t3
= refl
assoc-ggi : ∀ {T1 T2 T3 T4}
→ (c1 : CoeG T1 T2)
→ (c2 : CoeG T2 T3)
→ (c3 : CoeI T3 T4)
→ (c1 g⨟g c2) g⨟i c3 ≡ c1 g⨟i (c2 g⨟i c3)
assoc-ggi g1 g2 (⊥ A⌣G G l H ¬G≡H) = cong (λ □ → ⊥ □ G l H ¬G≡H) (⌣unique _ _)
assoc-ggi g1 g2 (g , G ‼)
rewrite assoc-ggg g1 g2 g = refl
assoc-ggi g1 g2 (` g)
rewrite assoc-ggg g1 g2 g = refl
assoc-gis : ∀ {T1 T2 T3 T4}
→ (c1 : CoeG T1 T2)
→ (c2 : CoeI T2 T3)
→ (c3 : CoeS T3 T4)
→ (c1 g⨟i c2) i⨟s c3 ≡ c1 g⨟i (c2 i⨟s c3)
assoc-gis g1 (⊥ A⌣G G l H ¬G≡H) s = refl
assoc-gis g1 (g2 , G ‼) id* = refl
assoc-gis g1 (g2 , G ‼) (H ⁇ l , i3) with G ≟G H
assoc-gis g1 (g2 , G ‼) (H ⁇ l , i3) | no ¬p
= cong (λ □ → ⊥ □ G l H ¬p) (⌣unique _ _)
assoc-gis g1 (g2 , G ‼) (H ⁇ l , i3) | yes refl
rewrite assoc-ggi g1 g2 i3 = refl
assoc-gis g1 (` g2) (` i3)
rewrite assoc-ggi g1 g2 i3 = refl
assoc-iss : ∀ {T1 T2 T3 T4}
→ (c1 : CoeI T1 T2)
→ (c2 : Cast T2 T3)
→ (c3 : Cast T3 T4)
→ (c1 i⨟s c2) i⨟s c3 ≡ c1 i⨟s (c2 ⨟ c3)
assoc-iss (⊥ A⌣G G l H ¬G≡H) s1 s2 = refl
assoc-iss (g , G ‼) id* s2 = refl
assoc-iss (g , G ‼) (H ⁇ l , i) s2 with G ≟G H
assoc-iss (g , G ‼) (H ⁇ l , i) s2 | no ¬G≡H = refl
assoc-iss (g , G ‼) (H ⁇ l , i) s2 | yes refl rewrite assoc-gis g i s2 = refl
assoc-iss (` g) (` i) s2 rewrite assoc-gis g i s2 = refl
assoc : ∀ {T1 T2 T3 T4}
→ (c1 : Cast T1 T2)
→ (c2 : Cast T2 T3)
→ (c3 : Cast T3 T4)
→ (c1 ⨟ c2) ⨟ c3 ≡ c1 ⨟ (c2 ⨟ c3)
assoc id* c2 c3 = refl
assoc (G ⁇ l , i) c2 c3 rewrite assoc-iss i c2 c3 = refl
assoc (` i) c2 c3 rewrite assoc-iss i c2 c3 = refl
lem-id : ∀ {T}
→ (v : Value Cast T)
-----------------------------
→ ⟦ id T ⟧ v ≡ return v
lem-id {*} v = refl
lem-id {` B̂} v = refl
lem-id {` S ⇒̂ T} (lam⟨ s ⇒ t ⟩ e E)
rewrite identityˡ s | identityʳ t
= refl
lem-id {` S ⊗̂ T} (cons⟨ s ⊗ t ⟩ v u)
rewrite identityʳ s | identityʳ t
= refl
lem-g⨟g : ∀ {T1 T2 T3}
→ (c1 : CoeG T1 T2)
→ (c2 : CoeG T2 T3)
→ ∀ v
--------------------
→ ⟦ c1 g⨟g c2 ⟧g v ≡ ⟦ c2 ⟧g (⟦ c1 ⟧g v)
lem-g⨟g B B v = refl
lem-g⨟g (s2 ⇒ t2) (s3 ⇒ t3) (lam⟨ s1 ⇒ t1 ⟩ e E)
rewrite assoc s3 s2 s1 | assoc t1 t2 t3
= refl
lem-g⨟g (s2 ⊗ t2) (s3 ⊗ t3) (cons⟨ s1 ⊗ t1 ⟩ v u)
rewrite assoc s1 s2 s3 | assoc t1 t2 t3
= refl
lem-g⨟i : ∀ {T1 T2 T3}
→ (c1 : CoeG T1 T2)
→ (c2 : CoeI T2 T3)
→ ∀ v
--------------------
→ ⟦ c1 g⨟i c2 ⟧i v ≡ (return (⟦ c1 ⟧g v)) >>= ⟦ c2 ⟧i
lem-g⨟i g1 (g2 , G ‼) v rewrite lem-g⨟g g1 g2 v = refl
lem-g⨟i g1 (` g2) v rewrite lem-g⨟g g1 g2 v = refl
lem-g⨟i g1 (⊥ A⌣G G l H ¬G≡H) v = refl
lem-i⨟s : ∀ {T1 T2 T3}
→ (c1 : CoeI T1 T2)
→ (c2 : CoeS T2 T3)
→ ∀ v
--------------------
→ ⟦ c1 i⨟s c2 ⟧i v ≡ ⟦ c1 ⟧i v >>= ⟦ c2 ⟧
lem-i⨟s (g , G ‼) id* v = refl
lem-i⨟s (g , G ‼) (H ⁇ l , i) v with G ≟G H
lem-i⨟s (g , G ‼) (H ⁇ l , i) v | yes refl = lem-g⨟i g i v
lem-i⨟s (g , G ‼) (H ⁇ l , i) v | no ¬G≡H = refl
lem-i⨟s (` g) (` i) v = lem-g⨟i g i v
lem-i⨟s (⊥ A⌣G G l H ¬G≡H) s v = refl
lem-seq : ∀ {T1 T2 T3}
→ (c1 : Cast T1 T2)
→ (c2 : Cast T2 T3)
→ ∀ v
--------------------
→ ⟦ c1 ⨟ c2 ⟧ v ≡ ⟦ c1 ⟧ v >>= ⟦ c2 ⟧
lem-seq id* t v = refl
lem-seq (G1 ⁇ l1 , i1) t v with project G1 l1 v
lem-seq (G1 ⁇ l1 , i1) t v | raise l' = refl
lem-seq (G1 ⁇ l1 , i1) t v | return v' = lem-i⨟s i1 t v'
lem-seq (` i1) t v = lem-i⨟s i1 t v
S : CastADT
S = record
{ Cast = Cast
; id = id
; ⌈_⌉ = ⌈_⌉
; _⨟_ = _⨟_
; ⟦_⟧ = ⟦_⟧
; lem-id = λ T v → lem-id v
; lem-seq = lem-seq
}
eq-¬⌣ : ∀ {T1 T2}
→ (v : Value Cast T1)
→ (l : Label×Polarity)
→ ¬ (T1 ⌣ T2)
---
→ ⟦ ⌈ T1 ⟹[ l ] T2 ⌉ ⟧ v
≡
raise l
eq-¬⌣ {*} {*} v l ¬p = ⊥-elim (¬p *⌣*)
eq-¬⌣ {*} {` P} v l ¬p = ⊥-elim (¬p (*⌣P P))
eq-¬⌣ {` P} {*} v l ¬p = ⊥-elim (¬p (P⌣* P))
eq-¬⌣ {` P} {` Q} v l ¬p with (` P) ⌣? (` Q)
eq-¬⌣ {` P} {` Q} v l ¬p | yes p' = ⊥-elim (¬p p')
eq-¬⌣ {` P} {` Q} v l ¬p | no ¬p' = refl
lem-⇑* : (l : Label×Polarity)(T : Type)
→ (⇑* l T) ≡ ⌈ T ⟹[ l ] * ⌉
lem-⇑* l * = refl
lem-⇑* l (` P) = refl
lem-⇓* : (l : Label×Polarity)(T : Type)
→ (⇓* l T) ≡ ⌈ * ⟹[ l ] T ⌉
lem-⇓* l * = refl
lem-⇓* l (` P) = refl
lem-⇑ : (l : Label×Polarity)(P : PreType)
→ (⇑ l P) ≡ (⌈ (` P) ⟹[ l ] ` ground P ⌉ ⨟ ⌈ ` ground P ⟹[ l ] * ⌉)
lem-⇑ l B̂ = refl
lem-⇑ l (S ⇒̂ T)
rewrite lem-⇓* (neg l) S | lem-⇑* l T
| identityʳ ⌈ T ⟹[ l ] * ⌉
= refl
lem-⇑ l (S ⊗̂ T)
rewrite lem-⇑* l S | lem-⇑* l T
| identityʳ ⌈ T ⟹[ l ] * ⌉
| identityʳ ⌈ S ⟹[ l ] * ⌉
= refl
lem-⇓ : (l : Label×Polarity)(P : PreType)
→ (⇓ l P) ≡ (⌈ * ⟹[ l ] ` ground P ⌉ ⨟ ⌈ ` ground P ⟹[ l ] ` P ⌉)
lem-⇓ l B̂ = refl
lem-⇓ l (S ⇒̂ T)
rewrite lem-⇑* (neg l) S | lem-⇓* l T
| identityʳ ⌈ S ⟹[ neg l ] * ⌉
= refl
lem-⇓ l (S ⊗̂ T)
rewrite lem-⇓* l S | lem-⇓* l T
= refl
eq-P* : ∀ {P}
→ (v : Value Cast (` P))
→ (l : Label×Polarity)
→ ¬ Ground P
→ ⟦ ⌈ (` P) ⟹[ l ] * ⌉ ⟧ v
≡
⟦ ⌈ (` P) ⟹[ l ] (` ground P) ⌉ ⟧ v >>= ⟦ ⌈ (` ground P) ⟹[ l ] * ⌉ ⟧
eq-P* {P} v l ¬gP
rewrite lem-⇑ l P
| lem-seq ⌈ (` P) ⟹[ l ] (` ground P) ⌉ ⌈ (` ground P) ⟹[ l ] * ⌉ v
= refl
eq-I* : ∀ {P}
→ (v : Value Cast (` P))
→ (l : Label×Polarity)
→ (gP : Ground P)
→ ⟦ ⌈ ` P ⟹[ l ] * ⌉ ⟧ v
≡
return (dyn gP v)
eq-I* {.B̂} v l `B = refl
eq-I* {.(* ⇒̂ *)} (lam⟨ c1 ⇒ c2 ⟩ e E) l `⇒
rewrite identityʳ c2
= refl
eq-I* {.(* ⊗̂ *)} (cons⟨ c1 ⊗ c2 ⟩ v v₁) l `⊗
rewrite identityʳ c1 | identityʳ c2
= refl
eq-*P : ∀ {P}
→ (v : Value Cast *)
→ (l : Label×Polarity)
→ ¬ Ground P
→ ⟦ ⌈ * ⟹[ l ] (` P) ⌉ ⟧ v
≡
⟦ ⌈ * ⟹[ l ] (` ground P) ⌉ ⟧ v >>= ⟦ ⌈ (` ground P) ⟹[ l ] (` P) ⌉ ⟧
eq-*P {P} v l ¬gP
rewrite lem-⇓ l P
| lem-seq ⌈ * ⟹[ l ] (` ground P) ⌉ ⌈ (` ground P) ⟹[ l ] (` P) ⌉ v
= refl
eq-*I-succ : ∀ {P}
→ (v : Value Cast (` P))
→ (l : Label×Polarity)
→ (gP : Ground P)
→ ⟦ ⌈ * ⟹[ l ] (` P) ⌉ ⟧ (dyn gP v)
≡
return v
eq-*I-succ v l `B = refl
eq-*I-succ (lam⟨ c1 ⇒ c2 ⟩ e E) l `⇒
rewrite identityʳ c2
= refl
eq-*I-succ (cons⟨ c1 ⊗ c2 ⟩ v v₁) l `⊗
rewrite identityʳ c1 | identityʳ c2
= refl
eq-*I-fail : {P Q : PreType}
→ (v : Value Cast (` P))
→ ∀ l
→ (gP : Ground P)
→ (gQ : Ground Q)
→ ¬ (_≡_ {A = Type} (` P) (` Q))
→ ⟦ ⌈ * ⟹[ l ] (` Q) ⌉ ⟧ (dyn gP v)
≡
raise l
eq-*I-fail {B̂} v l `B `B ¬p = ⊥-elim (¬p refl)
eq-*I-fail {B̂} v l `B `⇒ ¬p = refl
eq-*I-fail {B̂} v l `B `⊗ ¬p = refl
eq-*I-fail {.* ⇒̂ .*} v l `⇒ `B ¬p = refl
eq-*I-fail {.* ⇒̂ .*} v l `⇒ `⇒ ¬p = ⊥-elim (¬p refl)
eq-*I-fail {.* ⇒̂ .*} v l `⇒ `⊗ ¬p = refl
eq-*I-fail {.* ⊗̂ .*} v l `⊗ `B ¬p = refl
eq-*I-fail {.* ⊗̂ .*} v l `⊗ `⇒ ¬p = refl
eq-*I-fail {.* ⊗̂ .*} v l `⊗ `⊗ ¬p = ⊥-elim (¬p refl)
SIsLazyUD : IsLazyUD S
SIsLazyUD = record
{ eq-¬⌣ = eq-¬⌣
; eq-** = λ l v → refl
; eq-P* = eq-P*
; eq-I* = eq-I*
; eq-*P = eq-*P
; eq-*I-succ = eq-*I-succ
; eq-*I-fail = eq-*I-fail
; eq-B = λ l b → refl
; eq-⇒ = λ T21 T22 T11 T12 {S} {T} l {Γ} c₁ c₂ e E → refl
; eq-⊗ = λ T21 T22 T11 T12 {S} {T} l c₁ c₂ v1 v2 → refl
}
correctness-1 : ∀ {T e}
→ {o : Observable T}
→ Evalₛ S e o
---
→ Evalᵣ e o
correctness-1
= theorem-LazyUD-CastADT-correct-part-1 S SIsLazyUD
correctness-2 : ∀ {T e}
→ {o : Observable T}
→ Evalᵣ e o
---
→ Evalₛ S e o
correctness-2
= theorem-LazyUD-CastADT-correct-part-2 S SIsLazyUD