-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGG.agda
38 lines (32 loc) · 1.5 KB
/
GG.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
module LabelExpr.GG where
open import Data.Nat
open import Data.Unit using (⊤; tt)
open import Data.Bool using (true; false) renaming (Bool to 𝔹)
open import Data.List hiding ([_])
open import Data.Product renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_)
open import Data.Maybe
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Function using (case_of_)
open import Common.Utils
open import Common.SecurityLabels
open import Common.BlameLabels
open import LabelExpr.LabelExpr
open import LabelExpr.CatchUp
open import CoercionExpr.CoercionExpr renaming (_—→⟨_⟩_ to _—→ₗ⟨_⟩_; _∎ to _∎ₗ)
open import CoercionExpr.Precision renaming (prec→⊑ to precₗ→⊑)
open import CoercionExpr.SyntacComp
open import CoercionExpr.GG hiding (sim; sim-mult) renaming (catchup to catchupₗ)
open import LabelExpr.Sim using (sim)
sim-mult : ∀ {g g′} {M M′ V′}
→ ⊢ M ⊑ M′ ⇐ g ⊑ g′
→ M′ —↠ₑ V′
→ LVal V′
--------------------------------------------------------
→ ∃[ V ] (LVal V) × (M —↠ₑ V) × (⊢ V ⊑ V′ ⇐ g ⊑ g′)
sim-mult M⊑V′ (V′ ∎) v′ = catchup v′ M⊑V′
sim-mult M⊑M′ (M′ —→⟨ M′→N′ ⟩ N′↠V′) v′ =
let ⟨ N , M↠N , N⊑N′ ⟩ = sim M⊑M′ M′→N′ in
let ⟨ V , v , N↠V , V⊑V′ ⟩ = sim-mult N⊑N′ N′↠V′ v′ in
⟨ V , v , ↠ₑ-trans M↠N N↠V , V⊑V′ ⟩