This repository was archived by the owner on Jul 10, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
369 lines (318 loc) · 14 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import os, h5py
import numpy as np
import tensorflow as tf
from tensorflow import keras
from sklearn.model_selection import train_test_split
from keras.callbacks import EarlyStopping
from matplotlib import pyplot as plt
import wandb
import IPython
"-------- DATA Pre-Processing ---------"
def load_data():
"""
Loads the data from hdf5 file only for the 'drained' case.
Returns a tuple of 2 arrays:
outputs: tensor of shape (n_samples,length_sequence,variables)=(4474, 200, 11).
11 variables: 3 inputs, 7 outputs and the confinment (float) in that order.
contact_params: contact parameters of each sample (for the 3 different confinements)
"""
f = h5py.File('sequences.hdf5', 'r') #binary file containing the consolidating data by Aron
conf = np.array(list(f.keys()),dtype='float64') #Vector of confinement pressures
contact_params,outputs = ([] for i in range(0,2))
for k in f.keys(): #Adding info a different confinment pressures to the same list
outputs_i=[]
for i in range(0,len(f[k]['drained']['outputs'])): #adding the confinment to the outputs
output_i = f[k]['drained']['outputs'][i]
conf_array=np.repeat(np.array(float(k)),np.shape(output_i)[0])
outputs_i.append(np.column_stack((output_i,conf_array)))
outputs.extend(np.concatenate((f[k]['drained']['inputs'],outputs_i),axis=2))
contact_params.extend(f[k]['drained']['contact_params'])
if(np.isnan(np.array(contact_params)).any()): print("Nans in contact_params")
if(np.isnan(np.array(outputs)).any()): print("Nans in inputs_outputs")
contact_params=standardize_labels(np.array(contact_params))
outputs=standardize_features(np.array(outputs))
return np.asarray(outputs),np.asarray(contact_params)
def standardize_labels(contact_params):
"""
Normalize the labels (contact_params) as: x-mu(x) /sigma(x)
"""
means = np.mean(contact_params,axis=0)
stds = np.std(contact_params,axis=0)
for i in range(0,np.shape(contact_params)[1]):
contact_params[:,i]=(contact_params[:,i]-means[i])/stds[i]
return contact_params
def standardize_features(inputs_outputs):
"""
Normalize the features (inputs and outputs) as: x-mu(x) /sigma(x)
"""
means = np.mean(inputs_outputs,axis=(0,1))
stds = np.std(inputs_outputs,axis=(0,1))
for i in range(0,np.shape(inputs_outputs)[2]): #This should be ok, I've checked
inputs_outputs[:,:,i]=(inputs_outputs[:,:,i]-means[i])/stds[i]
return inputs_outputs
def split_data(inputs_outputs,contact_params,):
"""
Splits the data between train, test and validation sets and returns
a dict with tuples of the sets
"""
test_frac=0.2
puts_train,puts_test,contact_train,contact_test = train_test_split(inputs_outputs,contact_params,test_size=test_frac,random_state=10,shuffle=True)
puts_test,puts_val,contact_test,contact_val = train_test_split(puts_test,contact_test,test_size=0.5,random_state=20,shuffle=True)
return{
'train':(puts_train,contact_train),
'val':(puts_val,contact_val),
'test':(puts_test,contact_test)
}
"----------- MODELS -----------"
def mlp(config_wandb=None):
"""
Creates a Keras model that takes as input the mechanical response and
gives as output the contact parameters.
The model is a sequential multi layer perceptron.
"""
inputs_outputs,contact_params=load_data()
splits=split_data(inputs_outputs,contact_params)
num_samples, sequence_length, num_features = np.shape(splits['train'][0]) #outputs
num_samples2, num_labels = np.shape(splits['train'][1]) #contact params
#model definition
n_neurons=100
model = keras.Sequential()
model.add(keras.layers.Input(shape=(sequence_length,num_features)))
model.add(keras.layers.Flatten(input_shape=(None,sequence_length,n_neurons)))
#model.add(keras.layers.Normalization(axis=-1, mean=None, variance=None)) #not necessary if standardize_labels
model.add(keras.layers.Dense(n_neurons*3,activation='sigmoid'))
model.add(keras.layers.Dense(n_neurons,activation='relu'))
model.add(keras.layers.Dense(num_labels, name='predicted_contact_params'))
model.summary()
model.compile(optimizer='rmsprop',loss='mse', metrics=['mae',tf.keras.metrics.MeanAbsolutePercentageError()])
#Training
early_stopping_monitor = EarlyStopping(patience=10)
model.fit(splits['train'][0],splits['train'][1],
batch_size=32,
epochs=40,
validation_data=splits['val'],
callbacks=[early_stopping_monitor])
#Testing
testing_model(splits['test'][0][0:25],splits['test'][1][0:25],model,'MPL')
def rnn(config_wandb=None):
"""
Creates an RNN model using Keras LSTM layer.
Problem of type from multiple (sequence: outputs) to one (vector: contact_params)
Params:
config_wandb: dictionary with model variables. Useful when tracking with wandb
"""
inputs_outputs,contact_params=load_data()
splits=split_data(inputs_outputs,contact_params)
num_samples, sequence_length, num_features = np.shape(splits['train'][0]) #outputs
num_samples2, num_labels = np.shape(splits['train'][1]) #contact params
#model definition
units_LSTM=100 ; units_dense=100
normalization_layer=False
activation_LSTM='tanh'; activation_Dense='relu'
if not config_wandb==None:
units_LSTM =config_wandb["units_LSTM"]
units_dense=config_wandb["units_dense"]
activation_LSTM=config_wandb["activation_LSTM"]
activation_Dense=config_wandb["activation_Dense"]
normalization_layer=config_wandb["normalization_layer"]
model_lstm = keras.Sequential()
model_lstm.add(keras.layers.Input(shape=(sequence_length,num_features)))
if normalization_layer: model_lstm.add(keras.layers.Normalization(axis=-1, mean=None, variance=None))
model_lstm.add(keras.layers.LSTM(units_LSTM,activation=activation_LSTM))
model_lstm.add(keras.layers.Dense(units_dense,activation=activation_Dense))
model_lstm.add(keras.layers.Dense(num_labels, name='predicted_contact_params'))
model_lstm.summary()
if config_wandb==None:
model_lstm.compile(optimizer='adam',loss='mse', metrics=['mae'])
#Training
early_stopping_monitor = EarlyStopping(patience=10,restore_best_weights=True)
model_lstm.fit(splits['train'][0],splits['train'][1],
batch_size=32,
epochs=10,
validation_data=(splits['val'][0],splits['val'][1]),
callbacks=[early_stopping_monitor])
else:
model_lstm.compile(optimizer=config_wandb["optimizer"],
loss=config_wandb["loss"], metrics=['mae'])
#Training
early_stopping_monitor = EarlyStopping(patience=config_wandb["patience"],
restore_best_weights=True)
wandb_callback = wandb.keras.WandbCallback(
monitor='val_root_mean_squared_error',
save_model=(True))
model_lstm.fit(splits['train'][0],splits['train'][1],
batch_size=config_wandb["batch_size"],
epochs=config_wandb["epochs"],
validation_data=(splits['val']),
callbacks=[early_stopping_monitor,wandb_callback])
#TODO: Try this with pandas
#wandb.log({"pr": wandb.plot.pr_curve(splits['test'][2][0:10], model_lstm.predict(splits['test'][1][0:10]))})
#Testing
testing_model(splits['test'][0][0:20],splits['test'][1][0:20],model_lstm,'LSTM')
def cnn(config_wandb=None):
inputs_outputs,contact_params=load_data()
splits=split_data(inputs_outputs,contact_params)
num_samples, sequence_length, num_features = np.shape(splits['train'][0]) #outputs
num_samples2, num_labels = np.shape(splits['train'][1]) #contact params
units_cnn=100
units_dense=200
if not config_wandb==None:
units_cnn = config_wandb["units_CNN"]
units_dense=config_wandb["units_dense"]
#model that works well including e_0
model_cnn = keras.Sequential([
keras.layers.Input(shape=(sequence_length,num_features)),
keras.layers.Conv1D(units_cnn,2,activation='relu',padding="same"),
keras.layers.Conv1D(units_cnn*2,2,activation='relu',padding="same"),
keras.layers.AveragePooling1D(pool_size=2),
keras.layers.Conv1D(units_cnn*2,2,activation='relu',padding="same"),
keras.layers.MaxPooling1D(pool_size=2),
keras.layers.Conv1D(units_cnn*2,2,activation='relu',padding="same"),
keras.layers.MaxPooling1D(pool_size=2),
keras.layers.Conv1D(units_cnn*2,2,activation='relu',padding="same"),
#keras.layers.MaxPooling1D(pool_size=2),
#keras.layers.Flatten(),
keras.layers.GlobalMaxPooling1D(),
keras.layers.Dense(units_dense,activation='relu'),
keras.layers.Dense(num_labels,name='predicted_contact_params')
])
'''model_cnn = keras.Sequential([
keras.layers.Input(shape=(sequence_length,num_features)),
keras.layers.Conv1D(units_cnn,2,activation='relu',padding="same"),
#keras.layers.Conv1D(units_cnn*2,2,activation='relu',padding="same"),
keras.layers.AveragePooling1D(pool_size=2),
keras.layers.Conv1D(units_cnn*2,4,activation='relu',padding="same"),
keras.layers.MaxPooling1D(pool_size=2),
keras.layers.Conv1D(units_cnn*2,8,activation='relu',padding="same"),
#keras.layers.MaxPooling1D(pool_size=2),
#keras.layers.Conv1D(units_cnn*2,2,activation='relu',padding="same"),
#keras.layers.MaxPooling1D(pool_size=2),
#keras.layers.Flatten(),
keras.layers.GlobalMaxPooling1D(),
keras.layers.Dense(units_dense,activation='relu'),
keras.layers.Dense(num_labels,name='predicted_contact_params')
])'''
if config_wandb==None:
model_cnn.compile(optimizer='adam',loss='mse',
metrics=['mae',tf.keras.metrics.MeanAbsolutePercentageError()])
#Training
early_stopping_monitor = EarlyStopping(patience=10,restore_best_weights=True)
training_history=model_cnn.fit(splits['train'][0],splits['train'][1],
batch_size=32,
epochs=30,
validation_data=splits['val'],
callbacks=[early_stopping_monitor])
else:
opt_adam=tf.keras.optimizers.Adam(learning_rate=config_wandb["learning_rate"])
model_cnn.compile(optimizer=opt_adam,loss=config_wandb["loss"],
metrics=['mae',tf.keras.metrics.MeanAbsolutePercentageError()])
#Training
early_stopping_monitor = EarlyStopping(patience=config_wandb["patience"],
restore_best_weights=True)
wandb_callback = wandb.keras.WandbCallback(
monitor='val_root_mean_squared_error',
save_model=(True))
training_history=model_cnn.fit(splits['train'][0],splits['train'][1],
batch_size=config_wandb["batch_size"],
epochs=config_wandb["epochs"],
validation_data=splits['val'],
callbacks=[early_stopping_monitor,wandb_callback])
best_score_train_set=min(training_history.history["loss"])
best_score_val_set=min(training_history.history["val_loss"])
print(f'Best epoch train loss: {best_score_train_set}')
print(f'Best epoch val loss: {best_score_val_set}')
#Testing
testing_model(splits['test'][0][0:20],splits['test'][1][0:20],model_cnn,'CNN')
def wavenet():
inputs_outputs,contact_params=load_data()
splits=split_data(inputs_outputs,contact_params)
num_samples, sequence_length, num_features = np.shape(splits['train'][0]) #outputs
num_samples2, num_labels = np.shape(splits['train'][1]) #contact params
model_wavenet = keras.models.Sequential()
model_wavenet.add(keras.layers.Input(shape=(sequence_length,num_features)))
for rate in (1, 2, 4, 8) * 2:
model_wavenet.add(keras.layers.Conv1D(filters=20, kernel_size=2, padding="causal",
activation="relu", dilation_rate=rate))
model_wavenet.add(keras.layers.Conv1D(filters=10, kernel_size=1))
model_wavenet.add(keras.layers.Flatten())
model_wavenet.add(keras.layers.Dense(num_labels, name='predicted_contact_params'))
model_wavenet.compile(loss="mse", optimizer="adam", metrics=['mae',tf.keras.metrics.MeanAbsolutePercentageError()])
#Trainning
early_stopping_monitor = EarlyStopping(patience=10,restore_best_weights=True)
training_history = model_wavenet.fit(splits['train'][0],splits['train'][1],batch_size=32,
epochs=20,validation_data=splits['val'],callbacks=[early_stopping_monitor])
#Testing
testing_model(splits['test'][0][0:20],splits['test'][1][0:20],model_wavenet,'Wavenet')
"----------- Model EVALUATION -----------"
def testing_model(outputs, contact_params, model, name_model):
"""
Calculates the contact_params predicted by the model for a given output
"""
titles_labels=['E','$\\nu$','kr','$\eta$','$\mu$','$e_0$']
fig, ax = plt.subplots(2, 3)
contact_params_predicted=[]
contact_params_predicted=model.predict(outputs)
for i,prediction_i in enumerate(contact_params_predicted):
for j in range(len(prediction_i)):
x = j % 2
y = j // 2
#ax[x,y].plot(i,prediction_i[j],'r.',fillstyle='none') #prediction
#ax[x,y].plot(i,contact_params[i][j],'b.',fillstyle='none') #truth
ax[x,y].plot(contact_params[i][j],prediction_i[j],'k.')
ax[x,y].set_title(titles_labels[j])
ax[x,y].set_xlabel('truth');ax[x,y].set_ylabel('prediction')
#ax[1,2].plot(np.nan,np.nan,'r.',fillstyle='none',label='prediction')
#ax[1,2].plot(np.nan,np.nan,'b.',fillstyle='none',label='truth')
#ax[1,2].legend()
plt.tight_layout()
fig.savefig(name_model+'.pdf')
"----------- MAIN -----------"
def run_local():
tf.keras.backend.clear_session()
# MLP model
#mlp()
# RNN model
#rnn()
#Convolutional 1D
cnn()
#wavenet
#wavenet()
def experiment_tracking_wandb():
"""
Initializing wandb and config dictionary.
At the moment only implemented for tracking experiments of the RNN model.
"""
config_rnn={
"learning_rate": 0.001,
"epochs": 15,
"batch_size": 50,
"optimizer": 'rmsprop',
"loss": 'mse',
"patience": 10,
"architecture": 'RNN-LSTM',
"units_LSTM": 100,
"units_dense": 100,
"activation_LSTM": 'tanh', #must me tanh otherwise 'Layer lstm will not use cuDNN kernels since it doesn't meet the criteria' and runs too slow
"activation_Dense": 'relu',
"normalization_layer": False
}
config_cnn={
"learning_rate": 1E-4,
"epochs": 150,
"batch_size": 50,
"optimizer": 'adam',
"loss": 'mse',
"patience": 50,
"architecture": '5 conv1D, 3 pool, GlobalMax, 2 dense',
"units_CNN": 100,
"units_dense": 200
}
wandb.init(project="CNN_grainLearning", entity="luisaforozco",
config = config_cnn)
tf.keras.backend.clear_session()
#rnn(config_wandb=wandb.config)
cnn(config_wandb=wandb.config)
wandb.finish()
if __name__ == '__main__':
run_local()
#experiment_tracking_wandb()