-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpermanova.Rmd
208 lines (159 loc) · 5.88 KB
/
permanova.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
---
title: "B-dispr and Analysis of Variance"
date: '2022.04.26'
author: 'Nathan Malamud'
---
```{r setup, include=FALSE}
# markdown setup
library(knitr)
knitr::opts_chunk$set(echo = F) # Don't print code
knitr::opts_chunk$set(warning = F) # Don't print warnings
knitr::opts_chunk$set(message = F) # Don't print messages
knitr::opts_chunk$set(echo = TRUE)
# other important libraries
library(phyloseq)
library(vegan)
library(dplyr)
library(reshape2)
library(EcolUtils)
library(spaa)
library(ggplot2)
library(ggpubr)
library(tidyverse)
# clear all objects from workspace
rm(list = ls())
asvtab <- readRDS('./Data/asvtab.rds')
metadata <- readRDS('./Data/metadata.rds')
guilds <- readRDS('./Data/guilds.rds')
itsphyseq <- readRDS('./Data/itsphyseq.rds')
# subset itsphyseq and metadata across soil and litter
itsphyseq.soil = subset_samples(itsphyseq, Soil_Litter=="Soil")
itsphyseq.litter = subset_samples(itsphyseq, Soil_Litter=="Litter")
metadata.soil = subset(metadata, Soil_Litter=="Soil")
metadata.litter = subset(metadata, Soil_Litter=="Litter")
# subset asvs across functional guilds
guilds.amf <- subset(guilds, Guild=="Arbuscular Mycorrhizal")
asvs.amf <- guilds.amf$ASV_ID
asvtab.amf <- subset(asvtab, ASV_ID %in% asvs.amf)
guilds$groups[grepl("Plant Pathogen", guilds$Guild)] = "Plant Pathogen"
guilds.pathogen <- subset(guilds, groups=="Plant Pathogen")
asvs.pathogen <- guilds.pathogen$ASV_ID
guilds$groups[grepl("Saprotroph", guilds$Guild)] = "Saprotroph"
guilds.sap <- subset(guilds, groups=="Saprotroph")
asvs.sap <- guilds.sap$ASV_ID
# additional function for extracting figure legend
library(gridExtra)
g_legend<-function(a.gplot){
tmp <- ggplot_gtable(ggplot_build(a.gplot))
leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
legend <- tmp$grobs[[leg]]
legend
}
```
```{r stats functions, include=F}
B.dispr <- function(physeq.obj) {
# Tests assumptions of the PERMANOVA test.
#bray curtis dissimilarity matrix
bray <- phyloseq::distance(physeq.obj, method="bray")
sample.df <- data.frame(sample_data(physeq.obj))
# character = string of characters
# factor = categorical variable
# factor - interpret as a series of strings, not one big one
sample.df$Tree_species <- factor(sample.df$Tree_species,
levels = unique(sample.df$Tree_species)
)
betaD <- betadisper(bray, sample.df$Tree_species)
return(betaD)
}
pairwise.pnova <- function(physeq.obj, NP=1000) {
# Runs a pairwise permanova test (across tree species)
# and returns a pairwise adonis object.
# bray curtis dissimilarity matrix
bray <- phyloseq::distance(physeq.obj, method="bray")
sample.df <- data.frame(sample_data(physeq.obj))
# character = string of characters
# factor = categorical variable
# factor - interpret as a series of strings, not one big one
sample.df$Tree_species <- factor(sample.df$Tree_species,
levels = unique(sample.df$Tree_species)
)
ppnova <- adonis.pair(bray, sample.df$Tree_species, nper = 999)
return(ppnova)
}
```
```{r all fungi in soil and litter}
# Bray dissimilarity matrix
set.seed(1000)
bray <- phyloseq::distance(itsphyseq, method="bray")
.sampledf <- data.frame(sample_data(itsphyseq))
pnova <- adonis(bray ~Soil_Litter, data = .sampledf)
pnova
```
```{r amf fungi in soil}
itsphyseq.soil.amf = subset_taxa(itsphyseq.soil, ASV_ID %in% asvs.amf)
amfsoilPS <- prune_samples(sample_sums(itsphyseq.soil.amf)>0, itsphyseq.soil.amf)
amf.bdispr = B.dispr(amfsoilPS)
amf.tukey <- TukeyHSD(amf.bdispr)
amf.ppnova = pairwise.pnova(amfsoilPS)
boxplot(amf.bdispr, xlab="")
amf.ppnova = pairwise.pnova(amfsoilPS)
amf.ppnova
amf.tukey
```
```{r amf fungi in litter}
itsphyseq.litter.amf = subset_taxa(itsphyseq.litter, ASV_ID %in% asvs.amf)
amflitterPS <- prune_samples(sample_sums(itsphyseq.litter.amf)>0, itsphyseq.litter.amf)
amf.bdispr = B.dispr(amflitterPS)
amf.tukey <- TukeyHSD(amf.bdispr)
amf.ppnova = pairwise.pnova(amflitterPS)
boxplot(amf.bdispr, xlab="")
amf.ppnova = pairwise.pnova(amflitterPS)
amf.ppnova
amf.tukey
```
```{r sap fungi in soil}
itsphyseq.soil.sap = subset_taxa(itsphyseq.soil, ASV_ID %in% asvs.sap)
sapsoilPS <- prune_samples(sample_sums(itsphyseq.soil.sap)>0, itsphyseq.soil.sap)
sap.bdispr = B.dispr(sapsoilPS)
sap.tukey <- TukeyHSD(sap.bdispr)
sap.ppnova = pairwise.pnova(sapsoilPS)
boxplot(sap.bdispr, xlab="")
sap.ppnova = pairwise.pnova(sapsoilPS)
sap.ppnova
sap.tukey
```
```{r sap fungi in litter}
itsphyseq.litter.sap = subset_taxa(itsphyseq.litter, ASV_ID %in% asvs.sap)
saplitterPS <- prune_samples(sample_sums(itsphyseq.litter.sap)>0, itsphyseq.litter.sap)
sap.bdispr = B.dispr(saplitterPS)
sap.tukey <- TukeyHSD(sap.bdispr)
sap.ppnova = pairwise.pnova(saplitterPS)
boxplot(sap.bdispr, xlab="")
sap.ppnova = pairwise.pnova(saplitterPS)
sap.ppnova
amf.tukey
```
```{r pathogen fungi in soil}
itsphyseq.soil.pathogen = subset_taxa(itsphyseq.soil, ASV_ID %in% asvs.pathogen)
pathogensoilPS <- prune_samples(sample_sums(itsphyseq.soil.pathogen)>0, itsphyseq.soil.pathogen)
# Remove outlier due to low read count
pathogensoilPS <- subset_samples(itsphyseq.soil.pathogen, Sample_ID != "HITR_182HS")
pathogen.bdispr = B.dispr(pathogensoilPS)
pathogen.tukey <- TukeyHSD(pathogen.bdispr)
pathogen.ppnova = pairwise.pnova(pathogensoilPS)
boxplot(pathogen.bdispr, xlab="")
pathogen.ppnova = pairwise.pnova(pathogensoilPS)
pathogen.ppnova
pathogen.tukey
```
```{r pathogen fungi in litter}
itsphyseq.litter.pathogen = subset_taxa(itsphyseq.litter, ASV_ID %in% asvs.pathogen)
pathogenlitterPS <- prune_samples(sample_sums(itsphyseq.litter.pathogen)>0, itsphyseq.litter.pathogen)
pathogen.bdispr = B.dispr(pathogenlitterPS)
pathogen.tukey <- TukeyHSD(pathogen.bdispr)
pathogen.ppnova = pairwise.pnova(pathogenlitterPS)
boxplot(pathogen.bdispr, xlab="")
pathogen.ppnova = pairwise.pnova(pathogenlitterPS)
pathogen.ppnova
pathogen.tukey
```