-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimdb_3.py
50 lines (38 loc) · 1.49 KB
/
imdb_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from keras.datasets import imdb
from keras import models, layers
import numpy as np
# LOADING IMDB DATASET
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
# ENCODING THE INTEGER SEQUENCES INTO BINARY MATRIX
def vectorise_sequences(sequences, dimension=10000):
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
results[i, sequence] = 1.
return results
# VECTORISING DATA
x_train = vectorise_sequences(train_data)
x_test = vectorise_sequences(test_data)
# VECTORISING LABELS
y_train = np.asarray(train_labels).astype('float32')
y_test = np.asarray(test_labels).astype('float32')
# DEFINING MODEL
model = models.Sequential()
model.add(layers.Dense(16, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
# COMPILING MODEL
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
# DEFINING VALIDATION SET
x_val = x_train[:10000]
partial_x_train = x_train[10000:]
y_val = y_train[:10000]
partial_y_train = y_train[10000:]
# TRAINING MODEL
history = model.fit(partial_x_train, partial_y_train, epochs=4, batch_size=512, validation_data=(x_val, y_val))
# training_results = model.evaluate(x_test, y_test)
# print(training_results)
# PREDICTING MODEL ON NEW DATA
final = model.predict(x_test)
np.set_printoptions(precision=3)
print(final)
# NOTE: .evaluate and .predict can not be run within the same document