-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlatent-interpolation.py
59 lines (45 loc) · 1.71 KB
/
latent-interpolation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import cv2
import torch
import numpy as np
from games import race_game as game
from games import RaceConfig
from generators import RaceTrackGenerator
from utils import find_latest, one_hot, device
import matplotlib.pyplot as plt
import seaborn
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--generator', default=None, required=True, type=str)
parser.add_argument('--steps', default=10, type=int)
args = parser.parse_args()
seaborn.set()
seaborn.set_style("whitegrid", {'axes.grid': False})
def slerp(low, high, steps):
nsteps = torch.linspace(0., 1., steps)[None, :, None].to(low.device)
nlow = low / torch.norm(low)
nhigh = high / torch.norm(high)
omega = torch.acos(torch.sum(nlow * nhigh, dim=-1))[:, None, None]
so = torch.sin(omega)
return torch.sin((1. - nsteps) * omega) / so * low[:, None, :] + torch.sin(nsteps * omega) / so * high[:, None, :]
def main():
# load generator
path = find_latest(args.generator, 'generator_[0-9]*.pt')
print(f'Resuming generator from path "{path}"')
generator = RaceTrackGenerator.from_file(path)
latent = generator.latent_size
rows = 6
v1 = torch.randn(rows, latent) * 0.01
v2 = torch.randn(rows, latent) * 0.01
points = slerp(v1, v2, args.steps).view(-1, latent).to(device)
tracks = generator.generate(RaceConfig.max_segments, t=100., noise=points)
size = 512
game.reset(tracks)
img = game.prettier_tracks(top_n=args.steps * rows, size=size)
img = np.reshape(img, (rows, args.steps, size, size, 4))
img = np.transpose(img, (0, 2, 1, 3, 4))
img = np.reshape(img, (size * rows, args.steps * size, 4))
plt.imshow(img)
plt.show()
if __name__ == '__main__':
main()