-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPython_Workflow.py
138 lines (96 loc) · 7.41 KB
/
Python_Workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from Parsing_Input import *
from additional_help import *
from Computing_Single_Strategy import *
def clean_up(settable_inputs,fund_weights,custom_returns,equity_returns,benchmark_returns):
portfolio_set,benchmark_set = parse_settable_input(settable_inputs)
Portfolio_Name = portfolio_set['Portfolio Name']
Portfolio_Frequency = int(portfolio_set['Portfolio Frequency'])
Rolling_Window_Size = int(portfolio_set['Rolling Window Size'])
Momentum_N = int(portfolio_set['Momentum N'])
Cash_Excluded = portfolio_set['Cash Excluded']
### parse strategy-related input
fund_weights.sort_index(inplace=True)
equity_returns.sort_index(inplace=True)
custom_returns.sort_index(inplace=True)
fund_weights.rename_axis(mapper=['Portfolio','Asset'],axis=1,inplace=True) # Give headers layer name
if Cash_Excluded:
if 'cash' in fund_weights.columns.get_level_values('Asset'):
fund_weights.drop(columns=['cash'],level='Asset',inplace=True) # Drop cash if needed by default remove cash asset
equity_returns = equity_returns/100 # raw data is in percentage
fund_returns = custom_returns.join(equity_returns,how='outer').loc[fund_weights.index.min():fund_weights.index.max()] # combine ret
fund_rename_mapping = index_matching(fund_weights.columns.get_level_values('Asset').unique(),fund_returns.columns)
fund_weights.rename(columns=fund_rename_mapping,level='Asset',inplace=True)
fund_returns.rename(columns=fund_rename_mapping,inplace=True)
benchmark_returns.sort_index(inplace=True)
benchmark_returns = benchmark_returns/100
benchmark_weights=parse_benchmark_input(benchmark_set,fund_weights.index.copy())
benchmark_rename_mapping = index_matching(benchmark_weights.columns.get_level_values('Asset').unique(),benchmark_returns.columns)
benchmark_weights.rename(columns=benchmark_rename_mapping,level='Asset',inplace=True)
benchmark_returns.rename(columns=benchmark_rename_mapping,inplace=True)
cleaned_data = {'Portfolio_Name':Portfolio_Name,'Portfolio_Frequency':Portfolio_Frequency,'Rolling_Window_Size':Rolling_Window_Size,\
'Momentum_N':Momentum_N,'Cash_Excuded':Cash_Excluded,'fund_weights':fund_weights,'fund_returns':fund_returns,\
'benchmark_returns':benchmark_returns,'benchmark_weights':benchmark_weights}
return cleaned_data
def main(settable_inputs,fund_weights,custom_returns,equity_returns,benchmark_returns):
portfolio_set,benchmark_set = parse_settable_input(settable_inputs)
Portfolio_Name = portfolio_set['Portfolio Name']
Portfolio_Frequency = int(portfolio_set['Portfolio Frequency'])
Rolling_Window_Size = int(portfolio_set['Rolling Window Size'])
Momentum_N = int(portfolio_set['Momentum N'])
Cash_Excluded = portfolio_set['Cash Excluded']
### parse strategy-related input
fund_weights.sort_index(inplace=True)
equity_returns.sort_index(inplace=True)
custom_returns.sort_index(inplace=True)
fund_weights.rename_axis(mapper=['Portfolio','Asset'],axis=1,inplace=True) # Give headers layer name
if Cash_Excluded:
if 'cash' in fund_weights.columns.get_level_values('Asset'):
fund_weights.drop(columns=['cash'],level='Asset',inplace=True) # Drop cash if needed by default remove cash asset
equity_returns = equity_returns/100 # raw data is in percentage
fund_returns = custom_returns.join(equity_returns,how='outer').loc[fund_weights.index.min():fund_weights.index.max()] # combine ret
fund_rename_mapping = index_matching(fund_weights.columns.get_level_values('Asset').unique(),fund_returns.columns)
fund_weights.rename(columns=fund_rename_mapping,level='Asset',inplace=True)
fund_returns.rename(columns=fund_rename_mapping,inplace=True)
benchmark_returns.sort_index(inplace=True)
benchmark_returns = benchmark_returns/100
benchmark_weights=parse_benchmark_input(benchmark_set,fund_weights.index.copy())
benchmark_rename_mapping = index_matching(benchmark_weights.columns.get_level_values('Asset').unique(),benchmark_returns.columns)
benchmark_weights.rename(columns=benchmark_rename_mapping,level='Asset',inplace=True)
benchmark_returns.rename(columns=benchmark_rename_mapping,inplace=True)
fund_portfolio_returns = fund_weights.groupby(axis=1,level='Portfolio').\
apply(lambda f: calculate_portfolio_return(f[f.name],fund_returns,f.name))
benchmark_portfolio_returns = benchmark_weights.groupby(axis=1,level='Portfolio').\
apply(lambda f: calculate_portfolio_return(f[f.name],benchmark_returns,f.name))
eq_portfolio_weights = make_equal_weight_copy(fund_weights)
eq_portfolio_returns = eq_portfolio_weights.groupby(axis=1,level='Portfolio').\
apply(lambda f: calculate_portfolio_return(f[f.name],fund_returns,f.name))
bag_of_portfolio_returns = fund_portfolio_returns.join([eq_portfolio_returns,benchmark_portfolio_returns])
common_statistics = bag_of_portfolio_returns.apply(lambda f: calculate_common_statistics(f,Portfolio_Frequency,Momentum_N),axis=0)
benchmark_statistics = pd.concat(\
[fund_portfolio_returns.apply(lambda f: calculate_scalar_statistics(f,Portfolio_Frequency,Momentum_N,benchmark_portfolio_returns[b]),\
axis=0) for b in benchmark_portfolio_returns.columns],axis=0)
benchmark_statistics.index = pd.MultiIndex.\
from_tuples([tuple(ind.split(' vs ')) for ind in benchmark_statistics.index],names=['Statistic','Benchmark'])
benchmark_statistics = benchmark_statistics.unstack().stack(level='Portfolio')
benchmark_statistics.index = [i[0]+' '+i[1] for i in list(benchmark_statistics.index)]
Portfolio_Statistics =\
pd.concat([common_statistics.reset_index(),benchmark_statistics.reset_index()],axis=0,ignore_index=True,sort=False)
Portfolio_Statistics.set_index('index',inplace=True)
Portfolio_Statistics.index.name = 'Portfolio Statistics'
constant_param_mapper = {'freq':Portfolio_Frequency,'month_size':Rolling_Window_Size,'N':Momentum_N,'rf':0}
func_mapper = get_portfolio_return_statistics_func_mapper()
func_bag_of_portfolio_returns = ['Latest Annualized Return','Latest Annualized Standard Deviation','Drawdown']
func_fund_eq_returns = ['Calendar Year Return','Month Rolling Return']
fund_eq_portfolio_returns = fund_portfolio_returns.join(eq_portfolio_returns)
result_bag_of_portfolio_returns = dict([(func,bag_of_portfolio_returns.apply(lambda f: \
func_mapper[func](**get_portfolio_return_statistics_param_mapper(portfolio_return=f,**constant_param_mapper)[func]),\
axis=0)) for func in func_bag_of_portfolio_returns])
result_fund_eq_portfolio = dict([(func,fund_eq_portfolio_returns.apply(lambda f: \
func_mapper[func](**get_portfolio_return_statistics_param_mapper(portfolio_return=f,**constant_param_mapper)[func]),\
axis=0)) for func in func_fund_eq_returns])
correlation = fund_eq_portfolio_returns.corr()
correlation.index.name = 'Correlation'
result = {'Portfolio Statistics':Portfolio_Statistics,'Correlation':correlation,'Return':bag_of_portfolio_returns}
result.update(result_bag_of_portfolio_returns)
result.update(result_fund_eq_portfolio)
return result