Skip to content

Latest commit

 

History

History
1495 lines (836 loc) · 65.6 KB

evm_opcodes.md

File metadata and controls

1495 lines (836 loc) · 65.6 KB

Ethereum VM (EVM) Opcodes and Instruction Reference

This reference consolidates EVM opcode information from the yellow paper, stack exchange, solidity source, parity source, evm-opcode-gas-costs and Manticore.

Notes

The size of a "word" in EVM is 256 bits.

The gas information is a work in progress. If an asterisk is in the Gas column, the base cost is shown but may vary based on the opcode arguments.

Table

Opcode Name Description Extra Info Gas
0x00 STOP Halts execution - 0
0x01 ADD Addition operation - 3
0x02 MUL Multiplication operation - 5
0x03 SUB Subtraction operation - 3
0x04 DIV Integer division operation - 5
0x05 SDIV Signed integer division operation (truncated) - 5
0x06 MOD Modulo remainder operation - 5
0x07 SMOD Signed modulo remainder operation - 5
0x08 ADDMOD Modulo addition operation - 8
0x09 MULMOD Modulo multiplication operation - 8
0x0a EXP Exponential operation - 10*
0x0b SIGNEXTEND Extend length of two's complement signed integer - 5
0x0c - 0x0f Unused Unused -
0x10 LT Less-than comparison - 3
0x11 GT Greater-than comparison - 3
0x12 SLT Signed less-than comparison - 3
0x13 SGT Signed greater-than comparison - 3
0x14 EQ Equality comparison - 3
0x15 ISZERO Simple not operator - 3
0x16 AND Bitwise AND operation - 3
0x17 OR Bitwise OR operation - 3
0x18 XOR Bitwise XOR operation - 3
0x19 NOT Bitwise NOT operation - 3
0x1a BYTE Retrieve single byte from word - 3
0x1b SHL Shift Left EIP145 3
0x1c SHR Logical Shift Right EIP145 3
0x1d SAR Arithmetic Shift Right EIP145 3
0x20 KECCAK256 Compute Keccak-256 hash - 30*
0x21 - 0x2f Unused Unused
0x30 ADDRESS Get address of currently executing account - 2
0x31 BALANCE Get balance of the given account - 700
0x32 ORIGIN Get execution origination address - 2
0x33 CALLER Get caller address - 2
0x34 CALLVALUE Get deposited value by the instruction/transaction responsible for this execution - 2
0x35 CALLDATALOAD Get input data of current environment - 3
0x36 CALLDATASIZE Get size of input data in current environment - 2*
0x37 CALLDATACOPY Copy input data in current environment to memory - 3
0x38 CODESIZE Get size of code running in current environment - 2
0x39 CODECOPY Copy code running in current environment to memory - 3*
0x3a GASPRICE Get price of gas in current environment - 2
0x3b EXTCODESIZE Get size of an account's code - 700
0x3c EXTCODECOPY Copy an account's code to memory - 700*
0x3d RETURNDATASIZE Pushes the size of the return data buffer onto the stack EIP 211 2
0x3e RETURNDATACOPY Copies data from the return data buffer to memory EIP 211 3
0x3f EXTCODEHASH Returns the keccak256 hash of a contract's code EIP 1052 700
0x40 BLOCKHASH Get the hash of one of the 256 most recent complete blocks - 20
0x41 COINBASE Get the block's beneficiary address - 2
0x42 TIMESTAMP Get the block's timestamp - 2
0x43 NUMBER Get the block's number - 2
0x44 DIFFICULTY Get the block's difficulty - 2
0x45 GASLIMIT Get the block's gas limit - 2
0x46 CHAINID Returns the current chain’s EIP-155 unique identifier EIP 1344 2
0x47 - 0x4f Unused -
0x48 BASEFEE Returns the value of the base fee of the current block it is executing in. EIP 3198 2
0x50 POP Remove word from stack - 2
0x51 MLOAD Load word from memory - 3*
0x52 MSTORE Save word to memory - 3*
0x53 MSTORE8 Save byte to memory - 3
0x54 SLOAD Load word from storage - 800
0x55 SSTORE Save word to storage - 20000**
0x56 JUMP Alter the program counter - 8
0x57 JUMPI Conditionally alter the program counter - 10
0x58 PC Get the value of the program counter prior to the increment - 2
0x59 MSIZE Get the size of active memory in bytes - 2
0x5a GAS Get the amount of available gas, including the corresponding reduction for the cost of this instruction - 2
0x5b JUMPDEST Mark a valid destination for jumps - 1
0x5c - 0x5e Unused -
0x5f PUSH0 Place the constant value 0 on stack EIP-3855 2
0x60 PUSH1 Place 1 byte item on stack - 3
0x61 PUSH2 Place 2-byte item on stack - 3
0x62 PUSH3 Place 3-byte item on stack - 3
0x63 PUSH4 Place 4-byte item on stack - 3
0x64 PUSH5 Place 5-byte item on stack - 3
0x65 PUSH6 Place 6-byte item on stack - 3
0x66 PUSH7 Place 7-byte item on stack - 3
0x67 PUSH8 Place 8-byte item on stack - 3
0x68 PUSH9 Place 9-byte item on stack - 3
0x69 PUSH10 Place 10-byte item on stack - 3
0x6a PUSH11 Place 11-byte item on stack - 3
0x6b PUSH12 Place 12-byte item on stack - 3
0x6c PUSH13 Place 13-byte item on stack - 3
0x6d PUSH14 Place 14-byte item on stack - 3
0x6e PUSH15 Place 15-byte item on stack - 3
0x6f PUSH16 Place 16-byte item on stack - 3
0x70 PUSH17 Place 17-byte item on stack - 3
0x71 PUSH18 Place 18-byte item on stack - 3
0x72 PUSH19 Place 19-byte item on stack - 3
0x73 PUSH20 Place 20-byte item on stack - 3
0x74 PUSH21 Place 21-byte item on stack - 3
0x75 PUSH22 Place 22-byte item on stack - 3
0x76 PUSH23 Place 23-byte item on stack - 3
0x77 PUSH24 Place 24-byte item on stack - 3
0x78 PUSH25 Place 25-byte item on stack - 3
0x79 PUSH26 Place 26-byte item on stack - 3
0x7a PUSH27 Place 27-byte item on stack - 3
0x7b PUSH28 Place 28-byte item on stack - 3
0x7c PUSH29 Place 29-byte item on stack - 3
0x7d PUSH30 Place 30-byte item on stack - 3
0x7e PUSH31 Place 31-byte item on stack - 3
0x7f PUSH32 Place 32-byte (full word) item on stack - 3
0x80 DUP1 Duplicate 1st stack item - 3
0x81 DUP2 Duplicate 2nd stack item - 3
0x82 DUP3 Duplicate 3rd stack item - 3
0x83 DUP4 Duplicate 4th stack item - 3
0x84 DUP5 Duplicate 5th stack item - 3
0x85 DUP6 Duplicate 6th stack item - 3
0x86 DUP7 Duplicate 7th stack item - 3
0x87 DUP8 Duplicate 8th stack item - 3
0x88 DUP9 Duplicate 9th stack item - 3
0x89 DUP10 Duplicate 10th stack item - 3
0x8a DUP11 Duplicate 11th stack item - 3
0x8b DUP12 Duplicate 12th stack item - 3
0x8c DUP13 Duplicate 13th stack item - 3
0x8d DUP14 Duplicate 14th stack item - 3
0x8e DUP15 Duplicate 15th stack item - 3
0x8f DUP16 Duplicate 16th stack item - 3
0x90 SWAP1 Exchange 1st and 2nd stack items - 3
0x91 SWAP2 Exchange 1st and 3rd stack items - 3
0x92 SWAP3 Exchange 1st and 4th stack items - 3
0x93 SWAP4 Exchange 1st and 5th stack items - 3
0x94 SWAP5 Exchange 1st and 6th stack items - 3
0x95 SWAP6 Exchange 1st and 7th stack items - 3
0x96 SWAP7 Exchange 1st and 8th stack items - 3
0x97 SWAP8 Exchange 1st and 9th stack items - 3
0x98 SWAP9 Exchange 1st and 10th stack items - 3
0x99 SWAP10 Exchange 1st and 11th stack items - 3
0x9a SWAP11 Exchange 1st and 12th stack items - 3
0x9b SWAP12 Exchange 1st and 13th stack items - 3
0x9c SWAP13 Exchange 1st and 14th stack items - 3
0x9d SWAP14 Exchange 1st and 15th stack items - 3
0x9e SWAP15 Exchange 1st and 16th stack items - 3
0x9f SWAP16 Exchange 1st and 17th stack items - 3
0xa0 LOG0 Append log record with no topics - 375
0xa1 LOG1 Append log record with one topic - 750
0xa2 LOG2 Append log record with two topics - 1125
0xa3 LOG3 Append log record with three topics - 1500
0xa4 LOG4 Append log record with four topics - 1875
0xa5 - 0xaf Unused -
0xb0 JUMPTO Tentative libevmasm has different numbers EIP 615
0xb1 JUMPIF Tentative EIP 615
0xb2 JUMPSUB Tentative EIP 615
0xb4 JUMPSUBV Tentative EIP 615
0xb5 BEGINSUB Tentative EIP 615
0xb6 BEGINDATA Tentative EIP 615
0xb8 RETURNSUB Tentative EIP 615
0xb9 PUTLOCAL Tentative EIP 615
0xba GETLOCAL Tentative EIP 615
0xbb - 0xe0 Unused -
0xe1 SLOADBYTES Only referenced in pyethereum - -
0xe2 SSTOREBYTES Only referenced in pyethereum - -
0xe3 SSIZE Only referenced in pyethereum - -
0xe4 - 0xef Unused -
0xf0 CREATE Create a new account with associated code - 32000
0xf1 CALL Message-call into an account - Complicated
0xf2 CALLCODE Message-call into this account with alternative account's code - Complicated
0xf3 RETURN Halt execution returning output data - 0
0xf4 DELEGATECALL Message-call into this account with an alternative account's code, but persisting into this account with an alternative account's code - Complicated
0xf5 CREATE2 Create a new account and set creation address to sha3(sender + sha3(init code)) % 2**160 -
0xf6 - 0xf9 Unused - -
0xfa STATICCALL Similar to CALL, but does not modify state - 40
0xfb Unused - -
0xfd REVERT Stop execution and revert state changes, without consuming all provided gas and providing a reason - 0
0xfe INVALID Designated invalid instruction - 0
0xff SELFDESTRUCT Halt execution and register account for later deletion - 5000*

Instruction Details


STOP

0x00

() => ()

halts execution


ADD

0x01

Takes two words from stack, adds them, then pushes the result onto the stack.

(a, b) => (c)

c = a + b


MUL

0x02

(a, b) => (c)

c = a * b


SUB

0x03

(a, b) => (c)

c = a - b


DIV

0x04

(a, b) => (c)

c = a / b


SDIV

0x05

(a: int256, b: int256) => (c: int256)

c = a / b


MOD

0x06

(a, b) => (c)

c = a % b


SMOD

0x07

(a: int256, b: int256) => (c: int256)

c = a % b


ADDMOD

0x08

(a, b, m) => (c)

c = (a + b) % m


MULMOD

0x09

(a, b, m) => (c)

c = (a * b) % m


EXP

0x0a

(a, b, m) => (c)

c = (a * b) % m


SIGNEXTEND

0x0b

(b, x) => (y)

y = SIGNEXTEND(x, b)

sign extends x from (b + 1) * 8 bits to 256 bits.


LT

0x10

(a, b) => (c)

c = a < b

all values interpreted as uint256


GT

0x11

(a, b) => (c)

c = a > b

all values interpreted as uint256


SLT

0x12

(a, b) => (c)

c = a < b

all values interpreted as int256


SGT

0x13

(a, b) => (c)

c = a > b

all values interpreted as int256


EQ

0x14

Pops 2 elements off the stack and pushes the value 1 to the stack in case they're equal, otherwise the value 0.

(a, b) => (c)

c = a == b


ISZERO

0x15

(a) => (c)

c = a == 0


AND

0x16

(a, b) => (c)

c = a & b


OR

0x17

(a, b) => (c)

c = a | b


XOR

0x18

(a, b) => (c)

c = a ^ b


NOT

0x19

(a) => (c)

c = ~a


BYTE

0x1a

(i, x) => (y)

y = (x >> (248 - i * 8) & 0xff


SHL

0x1b

Pops 2 elements from the stack and pushes the second element onto the stack shifted left by the shift amount (first element).

(shift, value) => (res)

res = value << shift


SHR

0x1c

Pops 2 elements from the stack and pushes the second element onto the stack shifted right by the shift amount (first element).

(shift, value) => (res)

res = value >> shift


SAR

0x1d

(shift, value) => (res)

res = value >> shift

value: int256


KECCAK256

0x20

(offset, len) => (hash)

hash = keccak256(memory[offset:offset+len])


ADDRESS

0x30

() => (address(this))


BALANCE

0x31

() => (address(this).balance)


ORIGIN

0x32

() => (tx.origin)


CALLER

0x33

() => (msg.sender)


CALLVALUE

0x34

() => (msg.value)


CALLDATALOAD

0x35

(index) => (msg.data[index:index+32])


CALLDATASIZE

0x36

() => (msg.data.size)


CALLDATACOPY

0x37

(memOffset, offset, length) => ()

memory[memOffset:memOffset+len] = msg.data[offset:offset+len]


CODESIZE

0x38

() => (address(this).code.size)


CODECOPY

0x39

(memOffset, codeOffset, len) => ()

memory[memOffset:memOffset+len] = address(this).code[codeOffset:codeOffset+len]


GASPRICE

0x3a

() => (tx.gasprice)


EXTCODESIZE

0x3b

(addr) => (address(addr).code.size)


EXTCODECOPY

0x3c

(addr, memOffset, offset, length) => ()

memory[memOffset:memOffset+len] = address(addr).code[codeOffset:codeOffset+len]


RETURNDATASIZE

0x3d

() => (size)

size = RETURNDATASIZE()

The number of bytes that were returned from the last ext call


RETURNDATACOPY

0x3e

(memOffset, offset, length) => ()

memory[memOffset:memOffset+len] = RETURNDATA[codeOffset:codeOffset+len]

RETURNDATA is the data returned from the last external call


EXTCODEHASH

0x3f

(addr) => (hash)

hash = address(addr).exists ? keccak256(address(addr).code) : 0


BLOCKHASH

0x40

(number) => (hash)

hash = block.blockHash(number)


COINBASE

0x41

() => (block.coinbase)


TIMESTAMP

0x42

() => (block.timestamp)


NUMBER

0x43

() => (block.number)


DIFFICULTY

0x44

() => (block.difficulty)


GASLIMIT

0x45

() => (block.gaslimit)


CHAINID

0x46

() => (chainid)

where chainid = 1 for mainnet & some other value for other networks


SELFBALANCE

0x47

() => (address(this).balance)


BASEFEE

0x48

() => (block.basefee)

current block's base fee (related to EIP1559)


POP

0x50

(a) => ()

discards the top stack item


MLOAD

0x51

(offset) => (value)

value = memory[offset:offset+32]


MSTORE

0x52

Saves a word to the EVM memory. Pops 2 elements from stack - the first element being the word memory address where the saved value (second element popped from stack) will be stored.

(offset, value) => ()

memory[offset:offset+32] = value


MSTORE8

0x53

(offset, value) => ()

memory[offset:offset+32] = value & 0xff


SLOAD

0x54

Pops 1 element off the stack, that being the key which is the storage slot and returns the read value stored there.

(key) => (value)

value = storage[key]


SSTORE

0x55

Pops 2 elements off the stack, the first element being the key and the second being the value which is then stored at the storage slot represented from the first element (key).

(key, value) => ()

storage[key] = value


JUMP

0x56

(dest) => ()

pc = dest


JUMPI

0x57

Conditional - Pops 2 elements from the stack, the first element being the jump location and the second being the value 0 (false) or 1 (true). If the value’s 1 the PC will be altered and the jump executed. Otherwise, the value will be 0 and the PC will remain the same and execution unaltered.

(dest, cond) => ()

pc = cond ? dest : pc + 1


PC

0x58

() => (pc)


MSIZE

0x59

() => (memory.size)


GAS

0x5a

() => (gasRemaining)

not including the gas required for this opcode


JUMPDEST

0x5b

() => ()

noop, marks a valid jump destination


PUSH0

0x5f

The constant value 0 is pushed onto the stack.

() => (0)


PUSH1

0x60

The following byte is read from PC, placed into a word, then this word is pushed onto the stack.

() => (address(this).code[pc+1:pc+2])


PUSH2

0x61

() => (address(this).code[pc+2:pc+3])


PUSH3

0x62

() => (address(this).code[pc+3:pc+4])


PUSH4

0x63

() => (address(this).code[pc+4:pc+5])


PUSH5

0x64

() => (address(this).code[pc+5:pc+6])


PUSH6

0x65

() => (address(this).code[pc+6:pc+7])


PUSH7

0x66

() => (address(this).code[pc+7:pc+8])


PUSH8

0x67

() => (address(this).code[pc+8:pc+9])


PUSH9

0x68

() => (address(this).code[pc+9:pc+10])


PUSH10

0x69

() => (address(this).code[pc+10:pc+11])


PUSH11

0x6a

() => (address(this).code[pc+11:pc+12])


PUSH12

0x6b

() => (address(this).code[pc+12:pc+13])


PUSH13

0x6c

() => (address(this).code[pc+13:pc+14])


PUSH14

0x6d

() => (address(this).code[pc+14:pc+15])


PUSH15

0x6e

() => (address(this).code[pc+15:pc+16])


PUSH16

0x6f

() => (address(this).code[pc+16:pc+17])


PUSH17

0x70

() => (address(this).code[pc+17:pc+18])


PUSH18

0x71

() => (address(this).code[pc+18:pc+19])


PUSH19

0x72

() => (address(this).code[pc+19:pc+20])


PUSH20

0x73

() => (address(this).code[pc+20:pc+21])


PUSH21

0x74

() => (address(this).code[pc+21:pc+22])


PUSH22

0x75

() => (address(this).code[pc+22:pc+23])


PUSH23

0x76

() => (address(this).code[pc+23:pc+24])


PUSH24

0x77

() => (address(this).code[pc+24:pc+25])


PUSH25

0x78

() => (address(this).code[pc+25:pc+26])


PUSH26

0x79

() => (address(this).code[pc+26:pc+27])


PUSH27

0x7a

() => (address(this).code[pc+27:pc+28])


PUSH28

0x7b

() => (address(this).code[pc+28:pc+29])


PUSH29

0x7c

() => (address(this).code[pc+29:pc+30])


PUSH30

0x7d

() => (address(this).code[pc+30:pc+31])


PUSH31

0x7e

() => (address(this).code[pc+31:pc+32])


PUSH32

0x7f

() => (address(this).code[pc+32:pc+33])


DUP1

0x80

(1) => (1, 1)


DUP2

0x81

(1, 2) => (2, 1, 2)


DUP3

0x82

(1, 2, 3) => (3, 1, 2, 3)


DUP4

0x83

(1, ..., 4) => (4, 1, ..., 4)


DUP5

0x84

(1, ..., 5) => (5, 1, ..., 5)


DUP6

0x85

(1, ..., 6) => (6, 1, ..., 6)


DUP7

0x86

(1, ..., 7) => (7, 1, ..., 7)


DUP8

0x87

(1, ..., 8) => (8, 1, ..., 8)


DUP9

0x88

(1, ..., 9) => (9, 1, ..., 9)


DUP10

0x89

(1, ..., 10) => (10, 1, ..., 10)


DUP11

0x8a

(1, ..., 11) => (11, 1, ..., 11)


DUP12

0x8b

(1, ..., 12) => (12, 1, ..., 12)


DUP13

0x8c

(1, ..., 13) => (13, 1, ..., 13)


DUP14

0x8d

(1, ..., 14) => (14, 1, ..., 14)


DUP15

0x8e

(1, ..., 15) => (15, 1, ..., 15)


DUP16

0x8f

(1, ..., 16) => (16, 1, ..., 16)


SWAP1

0x90

(1, 2) => (2, 1)


SWAP2

0x91

(1, 2, 3) => (3, 2, 1)


SWAP3

0x92

(1, ..., 4) => (4, ..., 1)


SWAP4

0x93

(1, ..., 5) => (5, ..., 1)


SWAP5

0x94

(1, ..., 6) => (6, ..., 1)


SWAP6

0x95

(1, ..., 7) => (7, ..., 1)


SWAP7

0x96

(1, ..., 8) => (8, ..., 1)


SWAP8

0x97

(1, ..., 9) => (9, ..., 1)


SWAP9

0x98

(1, ..., 10) => (10, ..., 1)


SWAP10

0x99

(1, ..., 11) => (11, ..., 1)


SWAP11

0x9a

(1, ..., 12) => (12, ..., 1)


SWAP12

0x9b

(1, ..., 13) => (13, ..., 1)


SWAP13

0x9c

(1, ..., 14) => (14, ..., 1)


SWAP14

0x9d

(1, ..., 15) => (15, ..., 1)


SWAP15

0x9e

(1, ..., 16) => (16, ..., 1)


SWAP16

0x9f

(1, ..., 17) => (17, ..., 1)


LOG0

0xa0

(offset, length) => ()

emit(memory[offset:offset+length])


LOG1

0xa1

(offset, length, topic0) => ()

emit(memory[offset:offset+length], topic0)


LOG2

0xa2

(offset, length, topic0, topic1) => ()

emit(memory[offset:offset+length], topic0, topic1)


LOG3

0xa3

(offset, length, topic0, topic1, topic2) => ()

emit(memory[offset:offset+length], topic0, topic1, topic2)


LOG4

0xa4

(offset, length, topic0, topic1, topic2, topic3) => ()

emit(memory[offset:offset+length], topic0, topic1, topic2, topic3)


CREATE

0xf0

(value, offset, length) => (addr)

addr = keccak256(rlp([address(this), this.nonce]))[12:] addr.code = exec(memory[offset:offset+length]) addr.balance += value this.balance -= value this.nonce += 1


CALL

0xf1

(gas, addr, value, argsOffset, argsLength, retOffset, retLength) => (success)

memory[retOffset:retOffset+retLength] = address(addr).callcode.gas(gas).value(value)(memory[argsOffset:argsOffset+argsLength]) success = true (unless the prev call reverted)


CALLCODE

0xf2

(gas, addr, value, argsOffset, argsLength, retOffset, retLength) => (success)

memory[retOffset:retOffset+retLength] = address(addr).callcode.gas(gas).value(value)(memory[argsOffset:argsOffset+argsLength]) success = true (unless the prev call reverted)

TODO: what's the difference between this & CALL?


RETURN

0xf3

(offset, length) => ()

return memory[offset:offset+length]


DELEGATECALL

0xf4

(gas, addr, argsOffset, argsLength, retOffset, retLength) => (success)

memory[retOffset:retOffset+retLength] = address(addr).delegatecall.gas(gas)(memory[argsOffset:argsOffset+argsLength]) success = true (unless the prev call reverted)


CREATE2

0xf5

(value, offset, length, salt) => (addr)

initCode = memory[offset:offset+length] addr = keccak256(0xff ++ address(this) ++ salt ++ keccak256(initCode))[12:] address(addr).code = exec(initCode)


STATICCALL

0xfa

(gas, addr, argsOffset, argsLength, retOffset, retLength) => (success)

memory[retOffset:retOffset+retLength] = address(addr).delegatecall.gas(gas)(memory[argsOffset:argsOffset+argsLength]) success = true (unless the prev call reverted)

TODO: what's the difference between this & DELEGATECALL?


REVERT

0xfd

(offset, length) => ()

revert(memory[offset:offset+length])


SELFDESTRUCT

0xff

(addr) => ()

address(addr).send(address(this).balance) this.code = 0