-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.html
16612 lines (14329 loc) · 864 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="">
<meta name="author" content="">
<!-- Get Google Fonts -->
<link href='https://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Lato' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Raleway:300' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Roboto:100,300,400' rel='stylesheet' type='text/css'>
<title>Personal Fabrication Research HCI and Graphics</title>
<!-- Bootstrap Core CSS -->
<link href="css/bootstrap.min.css" rel="stylesheet">
<!-- Custom CSS -->
<link rel="shortcut icon" href="icon/csail.ico" type="image/x-icon" />
<link href="css/reset.css" rel="stylesheet"/>
<link href="css/index.css" rel="stylesheet">
<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<!-- Navigation -->
<nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<div class="container">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="http://hcie.csail.mit.edu/fabpub/">hcie.csail.mit.edu/fabpub (v2)</a>
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav">
<li>
<a href="#top">top</a>
</li>
<li>
<a href="#search">search</a>
</li>
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
<!-- /.container -->
</nav>
<!-- Page Content -->
<div class="container">
<div class="row">
<div class="col-md-10 maintanance-desc">
<h2>
<span class="header-desc">
<a name="#top"></a>
Personal Fabrication Research in HCI and Graphics:
</br>
An Overview of Related Work
</span>
</h2>
</br>
Webpage maintained by
<a href="http://stefaniemueller.org/" target="_blank" class="maintanance-desc">Stefanie Mueller</a>,
<a href="https://punpongsanon.info/" target="_blank" class="maintanance-desc">Parinya Punpongsanon</a>,
<a href="http://dishitaturakhia.com/" target="_blank" class="maintanance-desc">Dishita Turakhia</a>,
<a href="http://www.dogadogan.com/" target="_blank" class="maintanance-desc">M. Doga Dogan</a>,
<a href="https://www.farazfaruqi.com/" target="_blank" class="maintanance-desc">Faraz Faruqi</a>,
and
<a href="http://www.yunyizhu.info/" target="_blank" class="maintanance-desc">Yunyi Zhu</a>.
<a href="http://hcie.csail.mit.edu/" target="_blank" class="maintanance-desc">HCI Engineering Group</a>,
<a href="http://csail.mit.edu/" target="_blank" class="maintanance-desc">MIT CSAIL</a>
</br>
For feedback and changes, please email:
<a href="mailto:stefanie.mueller@mit.edu" class="maintanance-desc">
stefanie.mueller/at/mit.edu
</a>
</div>
<div class="col-md-2">
</br>
<img src="logo/csail.svg" width="150px">
</div>
</div>
<div class="row">
<div class="col-md-12">
</div>
<div class="col-md-12">
<span class="disclaimer">
The goal of this website is to provide a resource for newcomers in the field of computational fabrication so that they can quickly access recent contributions made in the field.
This webpage serves as a related work directory - the creators of this webpage do not hold the rights for these works, please contact the authors directly.
</span>
</div>
</div>
</br>
<div class="row portfolio">
<div class="col-md-3">
<span class="force-to-center"></span>
<img class= "paperimage" src="img/Patrick_Fab2016.png" />
</div>
<div class="col-md-9">
<span class="papertitle">
Personal Fabrication
</span>
</br>
<span class="paperauthors">
Patrick Baudisch and Stefanie Mueller.
</span>
</br>
<a name="search"></a>
<span class="paperdetails">
In this journal paper, we survey the related work in HCI and Computer Graphics over the last five years and
provide a roadmap for future research. The question we try to answer is whether the technology will further
progress towards consumers, which would allow the technology to scale from hundreds of thousands of users to
hundreds of millions of users. Our analysis reveals that a transition to consumers first requires a hardware +
software system that embodies the skills and expert knowledge that consumers lack [...]
</span>
</br>
</br>
<a href="http://www.nowpublishers.com/article/Details/HCI-055" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="dl/personal-fabrication.pdf" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
</div>
</div>
</br>
<div class="row">
<div class="col-md-12">
<div class="controls">
<span class="control-text">
Lookup:
</span>
<select id="Paper" data-ref="select-paper">
<option value="" >All conferences/journals</option>
<option value="creativityandcognition" >ACM C&C</option>
<option value="chi" >ACM CHI</option>
<option value="cea" >ACM CEA</option>
<option value="dis" >ACM DIS</option>
<option value="sgp" >ACM SGP</option>
<option value="sca" >ACM SCA</option>
<option value="tei" >ACM TEI</option>
<option value="scf" >ACM SCF</option>
<option value="siggraph">ACM SIGGRAPH</option>
<option value="siggraphasia" >ACM SIGGRAPH Asia</option>
<option value="uist" >ACM UIST</option>
<option value="vrst" >ACM VRST</option>
<option value="eurographics">EUROGRAPHICS</option>
<option value="computersandgraphics" >Elsevier Computer & Graphics</option>
<option value="computergraphicsandapplications" >IEEE Computer Graphics and Applications</option>
<option value="nime" >NIME</option>
<option value="iopsci" >IOP Science</option>
<option value="icra" >IEEE ICRA</option>
<option value="pervasivecomputing" >IEEE Pervasive Computing</option>
<option value="assets" >ACM ASSETS</option>
</select>
<span class="control-text">
+
</span>
<select id="Year" data-ref="select-year">
<option value="">All years</option>
<option value="2022">2022</option>
<option value="2021">2021</option>
<option value="2020">2020</option>
<option value="2019">2019</option>
<option value="2018">2018</option>
<option value="2017">2017</option>
<option value="2016">2016</option>
<option value="2015">2015</option>
<option value="2014">2014</option>
<option value="2013">2013</option>
<option value="2012">2012</option>
<option value="2011">2011</option>
<option value="2010">2010</option>
<option value="2009">2009</option>
<option value="2007">2007</option>
<option value="2006">2006</option>
<option value="2004">2004</option>
</select>
<span class="control-text">
or
</span>
<input type="text" class="search-box" data-ref="input-tag-search" placeholder=" search by conf., year, etc. " />
<!--input type="button" class="btn btn-filter" data-ref="input-btn-search" value="Filter" /!-->
<button type="submit" class="btn btn-filter" data-ref="input-btn-search" ><span class="glyphicon glyphicon-search" aria-hidden="true"></span> Filter</button>
<input type="button" class="btn btn-reset" data-ref="input-btn-all" value="Clear" />
<!-- <input type="button" class="btn btn-reset" data-ref="input-btn-all" value="Go to visualization" /> -->
<a href="fabgalaxy/" class="btn btn_visualization">Go to visualization</a>
</div>
</div>
</div>
<div class="search-included" data-ref="search-included" id="Container">
<!-- 2022 -------------------------------------------------------------------------------->
<div class="row portfolio 2022 all">
<div class="col-md-12">
<h1 class="page-header">
2022
</h1>
</div>
</div>
<!-- ------------------- CHI 2022----------------- -->
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/shape-haptics.jpeg"/>
</div>
<div class="col-md-9">
<span class="papertitle">
Shape-Haptics: Planar & Passive Force Feedback Mechanisms for Physical Interfaces (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Clement Zheng, Zhen Zhou Yong, Hongnan Lin, HyunJoo Oh and Ching Chiuan Yen
</span>
</br>
<span class="paperdetails">
We present Shape-Haptics, an approach for designers to rapidly design and fabricate passive force feedback mechanisms for physical interfaces. Such mechanisms are used in everyday interfaces and tools, and they are challenging to design. Shape-Haptics abstracts and broadens the haptic expression of this class of force feedback systems through 2D laser cut configurations that are simple to fabricate. They leverage the properties of polyoxymethylene plastic and comprise a compliant spring structure that engages with a sliding profile during tangible interaction. By shaping the sliding profile, designers can easily customize the haptic force feedback delivered by the mechanism. We provide a computational design sandbox to facilitate designers to explore and fabricate Shape-Haptics mechanisms. We also propose a series of applications that demonstrate the utility of Shape-Haptics in creating and customizing haptics for different physical interfaces.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3501829" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3501829" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=26Wn_0ZDIOE&ab_channel=ACMSIGCHI" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://clementzheng.info/Shape-Haptics" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/flex-haptics.jpeg"/>
</div>
<div class="col-md-9">
<span class="papertitle">
FlexHaptics: A Design Method for Passive Haptic Inputs Using Planar Compliant Structures (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Hongnan Lin, Liang He, Fangli Song, Yifan Li, Tingyu Cheng, Clement Zheng, Wei Wang and HyunJoo Oh
</span>
</br>
<span class="paperdetails">
This paper presents FlexHaptics, a design method for creating custom haptic input interfaces. Our approach leverages planar compliant structures whose force-deformation relationship can be altered by adjusting the geometries. Embedded with such structures, a FlexHaptics module exerts a fine-tunable haptic effect (i.e., resistance, detent, or bounce) along a movement path (i.e., linear, rotary, or ortho-planar). These modules can work separately or combine into an interface with complex movement paths and haptic effects. To enable the parametric design of FlexHaptic modules, we provide a design editor that converts user-specified haptic properties into underlying mechanical structures of haptic modules. We validate our approach and demonstrate the potential of FlexHaptic modules through six application examples, including a slider control for a painting application and a piano keyboard interface on touchscreens, a tactile low vision timer, VR game controllers, and a compound input device of a joystick and a two-step button.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3502113" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502113" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=GWFYzo-zAYM" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://www.codecraft.group/projects/flexhaptics" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/re-comp-fig.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
ReCompFig: Designing Dynamically Reconfigurable Kinematic Devices Using Compliant Mechanisms and Tensioning Cables (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Humphrey Yang, Tate Johnson, Ke Zhong, Dinesh Patel, Gina Olson, Carmel Majidi, Mohammad Islam and Lining Yao
</span>
</br>
<span class="paperdetails">
From creating input devices to rendering tangible information, the field of HCI is interested in using kinematic mechanisms to create human-computer interfaces. Yet, due to fabrication and design challenges, it is often difficult to create kinematic devices that are compact and have multiple reconfigurable motional degrees of freedom (DOFs) depending on the interaction scenarios. In this work, we combine compliant mechanisms (CMs) with tensioning cables to create dynamically reconfigurable kinematic mechanisms. The devices’ kinematics (DOFs) is enabled and determined by the layout of bendable rods. The additional cables function as on-demand motion constraints that can dynamically lock or unlock the mechanism's DOFs as they are tightened or loosened. We provide algorithms and a design tool prototype to help users design such kinematic devices. We also demonstrate various HCI use cases including a kinematic haptic display, a haptic proxy, and a multimodal input device.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/10.1145/3491102.3502065" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502065" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=ckhV0zJh5Qc" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://www.morphingmatter.cs.cmu.edu/projects/recompfig" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/hydro-mod.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
HydroMod : Constructive Modules for Prototyping Hydraulic Physical Interfaces (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Takafumi Morita, Yu Kuwajima, Ayato Minaminosono, Shingo Maeda and Yasuaki Kakehi
</span>
</br>
<span class="paperdetails">
In recent years, actuators that handle fluids such as gases and liquids have been attracting attention for their applications in soft robots and shape-changing interfaces. In the field of HCI, there have been various inflatable prototyping tools that utilize air control, however, very few tools for liquid control have been developed. In this study, we propose HydroMod, new constructive modules that can easily generate liquid flow and programmatically control liquid flow, with the aim of lowering the barrier to entry for prototyping with liquids. HydroMod consists of palm-sized small modules, which can generate liquid flow with the electrohydrodynamics (EHD) phenomenon by simply connecting the modules. Moreover, users can configure and control the flow path by simply recombining the modules. In this paper, we propose the design of the modules, evaluate the performance of HydroMod as a fluid system, and also show the possible application scenarios of fluid prototyping using this system.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3502096" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502096" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=L39n1hec_xM" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://xlab.iii.u-tokyo.ac.jp/projects/hydromod/" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/disappearables.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
(Dis)Appearables: A Concept and Method for Actuated Tangible UIs to Appear and Disappear based on Stages (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Ken Nakagaki, Jordan L Tappa, Yi Zheng, Jack Forman, Joanne Leong, Sven Koenig and Hiroshi Ishii
</span>
</br>
<span class="paperdetails">
(Dis)Appearables is an approach for actuated Tangible User Interfaces (TUIs) to appear and disappear. This technique is supported by Stages: physical platforms inspired by theatrical stages. Self-propelled TUI’s autonomously move between front and back stage allowing them to dynamically appear and disappear from users’ attention. This platform opens up a novel interaction design space for expressive displays with dynamic physical affordances. We demonstrate and explore this approach based on a proof-of-concept implementation using two-wheeled robots, and multiple stage design examples. We have implemented a stage design pipeline which allows users to plan and design stages that are composed with front and back stages, and transition portals such as trap doors or lifts. The pipeline includes control of the robots, which guides them on and off stage. With this proof-of-concept prototype, we demonstrated a range of applications including interactive mobility simulation, self re-configuring desktops, remote hockey, and storytelling/gaming. Inspired by theatrical stage designs, this is a new take on ‘controlling the existence of matter’ for user experience design.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3501906" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3501906" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=2R2gHAxZROQ" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://www.media.mit.edu/projects/dis-appearables/overview/" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/roman.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
Roman: Making Everyday Objects Robotically Manipulable with 3D-Printable Add-on Mechanisms (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Jiahao Li, Alexis Samoylov, Jeeeun Kim and Xiang 'Anthony' Chen
</span>
</br>
<span class="paperdetails">
One important vision of robotics is to provide physical assistance by manipulating different everyday objects, e.g., hand tools, kitchen utensils. However, many objects designed for dexterous hand-control are not easily manipulable by a single robotic arm with a generic parallel gripper. Complementary to existing research on developing grippers and control algorithms, we present Roman, a suite of hardware design and software tool support for robotic engineers to create 3D printable mechanisms attached to everyday handheld objects, making them easier to be manipulated by conventional robotic arms. The Roman hardware comes with a versatile magnetic gripper that can snap on/off handheld objects and drive add-on mechanisms to perform tasks. Roman also provides software support to register and author control programs. To validate our approach, we designed and fabricated Roman mechanisms for 14 everyday objects/tasks presented within a design space and conducted expert interviews with robotic engineers indicating that Roman serves as a practical alternative for enabling robotic manipulation of everyday objects.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3501818" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3501818" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://vimeo.com/536019633" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<!-- <a href="" class="btn btn-pages" alt="page" target="_blank">Page</a> -->
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/youth-mental-health.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
Exploring Situated & Embodied Support for Youth's Mental Health: Design Opportunities for Interactive Tangible Devices (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Claudia Daudén Roquet, Nikki Theofanopoulou, Jaimie L Freeman, Jessica Schleider, James J Gross, Katie Davis, Ellen Townsend and Petr Slovak
</span>
</br>
<span class="paperdetails">
The ability to manage emotions effectively is critical to healthy psychological and social development in youth. Prior work has focused on investigating the design of mental health technologies for this population, yet it is still unclear how to help them cope with emotionally difficult situations in-the-moment. In this paper, we aim to explore the appropriation, naturally emerging engagement patterns, and perceived psychological impact of an exemplar interactive tangible device intervention designed to provide in-situ support, when deployed with n=109 youth for 1.5 months. Our findings from semi-structured interviews and co-design workshops with a subset of participants (n=44 and n=25, respectively) suggest the potential of using technology-enabled objects to aid with down-regulation and self-compassion in moments of heightened emotion, to facilitate the practice of cognitive strategies, and to act as emotional companions. Lastly, we discuss design opportunities for integrating situated and embodied support in mental health interventions for youth.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/10.1145/3491102.3502135" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502135" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<!-- <a href="" class="btn btn-vdo" alt="video" target="_blank">Video</a> -->
<!-- <a href="" class="btn btn-pages" alt="page" target="_blank">Page</a> -->
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/pneumesh.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
PneuMesh: Pneumatic-driven Truss-based Shape Changing System (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Jianzhe Gu, Yuyu Lin, Qiang Cui, Xiaoqian Li, Jiaji Li, Lingyun Sun, Cheng Yao, Fangtian Ying, Guanyun Wang and Lining Yao
</span>
</br>
<span class="paperdetails">
From transoceanic bridges to large-scale installations, truss structures have been known for their structural stability and shape complexity. In addition to the advantages of static trusses, truss structures have a large degree of freedom to change shape when equipped with rotatable joints and retractable beams. However, it is difficult to design a complex motion and build a control system for large numbers of trusses. In this paper, we present PneuMesh, a novel truss-based shape-changing system that is easy to design and build but still able to achieve a range of tasks. PneuMesh accomplishes this by introducing an air channel connection strategy and reconfigurable constraint design that drastically decreases the number of control units without losing the complexity of shape-changing. We develop a design tool with real-time simulation to assist users in designing the shape and motion of truss-based shape-changing robots and devices. A design session with seven participants demonstrates that PneuMesh empowers users to design and build truss structures with a wide range of shapes and various functional motions.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/10.1145/3491102.3502099" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502099" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=LhtgYSo2pPE&ab_channel=ACMSIGCHI" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<!-- <a href="" class="btn btn-pages" alt="page" target="_blank">Page</a> -->
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/interaction-knitted-fabric.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
Interaction with Touch-Sensitive Knitted Fabrics: User Perceptions and Everyday Use Experiments (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Denisa Qori McDonald, Shruti Mahajan, Richard Vallett, Genevieve Dion, Ali Shokoufandeh and Erin Solovey
</span>
</br>
<span class="paperdetails">
Recent work has investigated the construction of touch-sensitive knitted fabrics, capable of being manufactured at scale, and having only two connections to external hardware. Additionally, several sensor design patterns and application prototypes have been introduced. Our aim is to start shaping the future of this technology according to user expectations. Through a formative focus group study, we explore users’ views of using these fabrics in different contexts and discuss potential concerns and application areas. Subsequently, we take steps toward addressing relevant questions, by first providing design guidelines for application designers. Furthermore, in one user study, we demonstrate that it is possible to distinguish different swipe gestures and identify accidental contact with the sensor, a common occurrence in everyday life. We then present experiments investigating the effect of stretching and laundering of the sensors on their resistance, providing insights about considerations necessary to include in computational models.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3502077" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502077" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=yCG3yhcoC0I&ab_channel=ACMSIGCHI" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<!-- <a href="" class="btn btn-pages" alt="page" target="_blank">Page</a> -->
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/embr.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
Embr: A Creative Framework for Hand Embroidered Liquid Crystal Textile Displays (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Shreyosi Endow, Mohammad Abu Nasir Rakib, Anvay Srivastava, Sara Rastegarpouyani and Cesar Torres
</span>
</br>
<span class="paperdetails">
Conductive thread is a common material in e-textile toolkits that allows practitioners to create connections between electronic components sewn on fabric. When powered, conductive threads are used as resistive heaters to activate thermochromic dyes or pigments on textiles to create interactive, aesthetic, and ambient textile displays. In this work, we introduce Embr, a creative framework for supporting hand-embroidered liquid crystal textile displays (LCTDs). This framework includes a characterization of conductive embroidery stitches, an expanded repertoire of thermal formgiving techniques, and a thread modeling tool used to simulate mechanical, thermal, and electrical behaviors of LCTDs. Through exemplar artifacts, we annotate a morphological design space of LCTDs and discuss the tensions and opportunities of satisfying the wider range of electrical, craft, cultural, aesthetic, and functional concerns inherent to e-textile practices.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3502117" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502117" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=iAzwAs16zOQ" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://hybridatelier.cearto.com/projects/62" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/decomposable-interactive-system.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
Towards Decomposable Interactive Systems: Design of a Backyard-Degradable Wireless Heating Interface (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Katherine W Song, Aditi Maheshwari, Eric M Gallo, Andreea Danielescu and Eric Paulos
</span>
</br>
<span class="paperdetails">
Sustainability is critical to our planet and thus our designs. Within HCI, there is a tension between the desire to create interactive electronic systems and sustainability. In this paper, we present the design of an interactive system comprising components that are entirely decomposable. We leverage the inherent material properties of natural materials, such as paper, leaf skeletons, and chitosan, along with silver nanowires to create a new system capable of being electrically controlled as a portable heater. This new decomposable system, capable of wirelessly heating to >70°C, is flexible, lightweight, low-cost, and reusable, and it maintains its functionality over long periods of heating and multiple power cycles. We detail its design and present a series of use cases, from enabling a novel resealable packaging system to acting as a catalyst for shape-changing designs and beyond. Finally, we highlight the important decomposable property of the interactive system when it meets end-of-life.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3502007" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502007" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=Otw2C8Ze-cM" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://www.hybrid-ecologies.org/news/towards-decomposable-interactive-systems%3A-design-of-a-backyard-degradable-wireless-heating-interface" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/meander-coil.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
Meander Coil++: A Body-scale Wireless Power Transmission Using Safe-to-body and Energy-efficient Transmitter Coil (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Ryo Takahashi, Wakako Yukita, Tomoyuki Yokota, Takao Someya and Yoshihiro Kawahara
</span>
</br>
<span class="paperdetails">
Wearable devices for life-logging and healthcare have been studied, but the need for frequent charging imposes inconvenience for long-term use. Integrating textile-based wireless chargers (i.e., coil) into clothing enables sustainable wearable computing by charging the on-body devices in use. However, the electromagnetic field generated by conventional coil chargers strongly interferes with human body, and the high resistance of conductive threads leads to inefficient power delivery. This paper presents Meander Coil++, enabling safe, energy-efficient, and body-scale wireless power delivery. Meander Coil++ uses a wiring pattern that suppresses electromagnetic exposure to the human body without compromising power delivery performance and a liquid-metal-based low-loss conductive cord. With these advancements, Meander Coil++ transmits a few watts of power to on-body devices at 25% DC-to-DC efficiency while complying with international safety guidelines regarding electromagnetic exposure. We envision Meander Coil++ can maintain multiple devices on body for weeks beyond the confines of their small battery capacity.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3502119" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3502119" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=vfoPMXaw5kc" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<!-- <a href="" class="btn btn-pages" alt="page" target="_blank">Page</a> -->
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/full-proof-joint.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
FoolProofJoint: Reducing Assembly Errors of Laser Cut 3D Models by Means of Custom Joint Patterns (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Keunwoo Park, Conrad Lempert, Muhammad Abdullah, Shohei Katakura, Jotaro Shigeyama, Thijs Roumen and Patrick Baudisch
</span>
</br>
<span class="paperdetails">
We present FoolProofJoint, a software tool that simplifies the assembly of laser-cut 3D models and reduces the risk of erroneous assembly. FoolProofJoint achieves this by modifying finger joint patterns. Wherever possible, FoolProofJoint makes similar looking pieces fully interchangeable, thereby speeding up the user's visual search for a matching piece. When that is not possible, FoolProofJoint gives finger joints a unique pattern of individual finger placements so as to fit only with the correct piece, thereby preventing erroneous assembly. In our benchmark set of 217 laser-cut 3D models downloaded from kyub.com, FoolProofJoint made groups of similar looking pieces fully interchangeable for 65% of all groups of similar pieces; FoolProofJoint fully prevented assembly mistakes for 97% of all models.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3501919" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3501919" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=HP_hydMD6NE&t=10s" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://kwpark.io/foolproofjoint/" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/infrared-tags.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
InfraredTags: Embedding Invisible AR Markers and Barcodes Using Low-Cost, Infrared-Based 3D Printing and Imaging Tools (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Mustafa Doga Dogan, Ahmad Taka, Michael Lu, Yunyi Zhu, Akshat Kumar, Aakar Gupta and Stefanie Mueller
</span>
</br>
<span class="paperdetails">
Existing approaches for embedding unobtrusive tags inside 3D objects require either complex fabrication or high-cost imaging equipment. We present InfraredTags, which are 2D markers and barcodes imperceptible to the naked eye that can be 3D printed as part of objects, and detected rapidly by low-cost near-infrared cameras. We achieve this by printing objects from an infrared-transmitting filament, which infrared cameras can see through, and by having air gaps inside for the tag’s bits, which appear at a different intensity in the infrared image. We built a user interface that facilitates the integration of common tags (QR codes, ArUco markers) with the object geometry to make them 3D printable as InfraredTags. We also developed a low-cost infrared imaging module that augments existing mobile devices and decodes tags using our image processing pipeline. Our evaluation shows that the tags can be detected with little near-infrared illumination (0.2lux) and from distances as far as 250cm. We demonstrate how our method enables various applications, such as object tracking and embedding metadata for augmented reality and tangible interactions.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3501951" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://groups.csail.mit.edu/hcie/files/research-projects/infraredtags/2022-CHI-InfraredTags-paper.pdf" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=-8NWIsyY-2E&t=6s" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://hcie.csail.mit.edu/research/infraredtags/infraredtags.html" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/print-a-sketch.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
Print-A-Sketch: A Handheld Printer for Physical Sketching of Circuits and Sensors on Everyday Surfaces (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Narjes Pourjafarian, Marion Koelle, Fjolla Mjaku, Paul Strohmeier and Jürgen Steimle
</span>
</br>
<span class="paperdetails">
We present Print-A-Sketch, an open-source handheld printer prototype for sketching circuits and sensors. Print-A-Sketch combines desirable properties from free-hand sketching and functional electronic printing. Manual human control of large strokes is augmented with computer control of fine detail. Shared control of Print-A-Sketch supports sketching interactive interfaces on everyday objects – including many objects with materials or sizes which otherwise are difficult to print on. We present an overview of challenges involved in such a system and show how these can be addressed using context-aware, dynamic printing. Continuous sensing ensures quality prints by adjusting inking-rate to hand movement and material properties. Continuous sensing also enables the print to adapt to previously printed traces to support incremental and iterative sketching. Results show good conductivity on many materials and high spatial precision, supporting on-the-fly creation of functional interfaces.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3502074" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502074" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=nnvOC-OtINw" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://hci.cs.uni-saarland.de/projects/print-a-sketch/" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/knit-skin.jpeg"/>
</div>
<div class="col-md-9">
<span class="papertitle">
KnitSkin: Machine-Knitted Scaled Skin for Locomotion (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Jin Hee (Heather) Kim, Shreyas Dilip Patil, Sarina Matson, Melissa Conroy and Cindy Hsin-Liu Kao
</span>
</br>
<span class="paperdetails">
We present KnitSkin, a bio-inspired sleeve that can traverse diverse cylindrical terrains, ranging from a user’s forearm at a wearable scale, to pipes and tree branches at an environmental scale. Fabricated with a machine knitted substrate, the sleeve configures a stepped array of knitted scales that exhibit anisotropic friction. Coupled with the extension of actuators enclosed in the sleeve, the scales enable effective directional locomotion on cylindrical surfaces with varying slopes, textures, and curvatures. KnitSkin’s substrates are characterized by scales whose geometries and materials can be fine-tuned and channels that can accommodate diverse actuators. We introduce the design elements of KnitSkin in which we characterize a series of substrate parameters and their resulting anisotropic behaviors. In evaluating the locomotion, we examine the variables associated with the surface and actuator characteristics. KnitSkin obtains diverse applications across different scales, including wearable interfaces, industrial pipe-monitoring, to agricultural robots.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3502142" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502142" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=esgqiD6WmWk" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://www.hybridbody.human.cornell.edu/#/knitskin/" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/asteroids.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
ASTEROIDS: Exploring Swarms of Mini-Telepresence Robots for Physical Skill Demonstration (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Jiannan Li, Maurício Sousa, Chu Li, Jessie Liu, Yan Chen, Ravin Balakrishnan and Tovi Grossman
</span>
</br>
<span class="paperdetails">
Online synchronous tutoring allows for immediate engagement between instructors and audiences over distance. However, tutoring physical skills remains challenging because current telepresence approaches may not allow for adequate spatial awareness, viewpoint control of the demonstration activities scattered across an entire work area, and the instructor’s sufficient awareness of the audience. We present Asteroids, a novel approach for tangible robotic telepresence, to enable workbench-scale physical embodiments of remote people and tangible interactions by the instructor. With Asteroids, the audience can actively control a swarm of mini-telepresence robots, change camera positions, and switch to other robots’ viewpoints. Demonstrators can perceive the audiences’ physical presence while using tangible manipulations to control the audience’s viewpoints and presentation flow. We conducted an exploratory evaluation for Asteroids with 12 remote participants in a model-making tutorial scenario with an architectural expert demonstrator. Results suggest our unique features benefitted participants’ engagement, sense of presence, and understanding.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/10.1145/3491102.3501927" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3501927" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=SYCYVwSNtnU&ab_channel=LiJiannan" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<!-- <a href="" class="btn btn-pages" alt="page" target="_blank">Page</a> -->
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/electri-pop.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
ElectriPop: Low-Cost, Shape-Changing Displays Using Electrostatically Inflated Mylar Sheets (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Cathy Mengying Fang, Jianzhe Gu, Lining Yao and Chris Harrison
</span>
</br>
<span class="paperdetails">
We describe how sheets of metalized mylar can be cut and then “inflated” into complex 3D forms with electrostatic charge for use in digitally-controlled, shape-changing displays. This is achieved by placing and nesting various cuts, slits and holes such that mylar elements repel from one another to reach an equilibrium state. Importantly, our technique is compatible with industrial and hobbyist cutting processes, from die and laser cutting to handheld exacto-knives and scissors. Given that mylar film costs <$1 per m2, we can create self-actuating 3D objects for just a few cents, opening new uses in low-cost consumer goods. We describe a design vocabulary, interactive simulation tool, fabrication guide, and proof-of-concept electrostatic actuation hardware. We detail our technique’s performance metrics along with qualitative feedback from a design study. We present numerous examples generated using our pipeline to illustrate the rich creative potential of our method.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/10.1145/3491102.3501837" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3501837" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=XupMCugYGiQ" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://www.figlab.com/research/2022/electripop" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/3d-printed-street-crossing.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
3D Printed Street Crossings: Supporting Orientation and Mobility Training with People who are Blind or have Low Vision (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Leona Holloway, Matthew Butler and Kim Marriott
</span>
</br>
<span class="paperdetails">
The ability to cross the street at intersections is an essential skill, often taught to people who are blind or have low vision (BLV) with the aid of tactile maps and kits or toys. However, each of the existing mapping tools has shortcomings. We investigated whether co-designed 3D printed components can offer benefits. Guided by consultation with 11 Orientation and Mobility (O&M) professionals, we co-designed a series of 3D printed kits that they then used in their practice with BLV children who showed high levels of engagement and learning. The 3D materials were found to demonstrate the key concepts for street crossings in a portable, engaging and professional manner. They will be released for free download, enabling O&M professionals to access or modify the materials as required. We hope that use of our co-designed 3D printed tools will contribute to the safety, independence and inclusion of BLV people.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/10.1145/3491102.3502072" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502072" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=Sciwu7BQgkQ" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<!-- <a href="" class="btn btn-pages" alt="page" target="_blank">Page</a> -->
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/o-and-o.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
O&O: A DIY toolkit for designing and rapid prototyping olfactory interfaces (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Yuxuan Lei, Qi Lu and Yingqing Xu
</span>
</br>
<span class="paperdetails">
Constructing olfactory interfaces on demand requires significant design proficiency and engineering effort. The absence of powerful and convenient tools that reduced innovation complexity posed obstacles for future research in the area. To address this problem, we proposed O&O, a modular olfactory interface DIY toolkit. The toolkit consists of: (1) a scent generation kit, a set of electronics and accessories that supported three common scent vaporization techniques; (2) a module construction kit, a set of primitive cardboard modules for assembling permutable functional structures; (3) a design manual, a step-by-step design thinking framework that directs the decision-making and prototyping process. We organized a formal workshop with 19 participants and four solo DIY trials to evaluate the capability of the toolkit, the overall user engagement, the creations in both sessions, and the iterative suggestions. Finally, design implications and future opportunities were discussed for further research.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/10.1145/3491102.3502033" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3502033" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=Fcg_hM-ESds" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<!-- <a href="" class="btn btn-pages" alt="page" target="_blank">Page</a> -->
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/robotic-plastering.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
Interactive Robotic Plastering: Augmented Interactive Design and Fabrication for On-site Robotic Plasteri (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Daniela Mitterberger, Selen Ercan Jenny, Lauren Vasey, Ena Lloret-Fritschi, Petrus Aejmelaeus-Lindström, Fabio Gramazio and Matthias Kohler
</span>
</br>
<span class="paperdetails">
This paper presents Interactive Robotic Plastering (IRoP), a system enabling designers and skilled workers to engage intuitively with an in-situ robotic plastering process. The research combines three elements: interactive design tools, an augmented reality interface, and a robotic spraying system. Plastering is a complex process relying on tacit knowledge and craftsmanship, making it difficult to simulate and automate. However, our system utilizes a controller-based interaction system to enable diverse users to interactively create articulated plasterwork in-situ. A customizable computational toolset converts human intentions into robotic motions while respecting robotic and material constraints. To accomplish this, we developed both an interactive computational model to translate the data from a motion-tracking system into robotic trajectories using design and editing tools as well as an audio-visual guidance system for in-situ projection. We then conducted two user-studies of designers and skilled workers who used IRoP to design and fabricate a full-scale demonstrator.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3501842" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3501842" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=5O1jFSDmYUc" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<!-- <a href="" class="btn btn-pages" alt="page" target="_blank">Page</a> -->
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/electrotacton.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
First Steps Towards Designing Electrotactons: Investigating Intensity and Pulse Frequency as Parameters for Electrotactile Cues. (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Yosuef Alotaibi, John H Williamson and Stephen Anthony Brewster
</span>
</br>
<span class="paperdetails">
Electrotactile stimulation is a novel form of haptic feedback. There is little work investigating its basic design parameters and how they create effective tactile cues. This paper describes two experiments that extend our knowledge of two key parameters. The first investigated the combination of pulse width and amplitude (Intensity) on sensations of urgency, annoyance, valence and arousal. Results showed significant effects: increasing Intensity caused higher ratings of urgency, annoyance and arousal but reduced valence. We established clear levels for differentiating each sensation. A second study then investigated Intensity and Pulse Frequency to find out how many distinguishable levels could be perceived. Results showed that both Intensity and Pulse Frequency significantly affected perception, with four distinguishable levels of Intensity and two of Pulse Frequency. These results add significant new knowledge about the parameter space of electrotactile cue design and help designers select suitable properties to use when creating electrotactile cues.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3501863" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3501863" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<!-- <a href="" class="btn btn-vdo" alt="video" target="_blank">Video</a> -->
<!-- <a href="" class="btn btn-pages" alt="page" target="_blank">Page</a> -->
</div>
</div>
<div class="row portfolio chi 2022 all">
<div class="col-md-3">
<img class= "paperimage" src="img/chi2022/fabricat-ink.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
FabricatINK: Personal Fabrication of Bespoke Displays Using Electronic Ink from Upcycled E Readers (ACM CHI 2022)
</span>
</br>
<span class="paperauthors">
Ollie Hanton, Zichao Shen, Mike Fraser and Anne Roudaut
</span>
</br>
<span class="paperdetails">
Abstract: FabricatINK explores the personal fabrication of irregularly-shaped low-power displays using electronic ink (E ink). E ink is a programmable bicolour material used in traditional form-factors such as E readers. It has potential for more versatile use within the scope of personal fabrication of custom-shaped displays, and it has the promise to be the pre-eminent material choice for this purpose. We appraise technical literature to identify properties of E ink, suited to fabrication. We identify a key roadblock, universal access to E ink as a material, and we deliver a method to circumvent this by upcycling broken electronics. We subsequently present a novel fabrication method for irregularly-shaped E ink displays. We demonstrate our fabrication process and E ink’s versatility through ten prototypes showing different applications and use cases. By addressing E ink as a material for display fabrication, we uncover the potential for users to create custom-shaped truly bistable displays.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/abs/10.1145/3491102.3501844" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3491102.3501844" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=OrCmL338joE" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<!-- <a href="" class="btn btn-pages" alt="page" target="_blank">Page</a> -->
</div>
</div>
<!-- 2021 -------------------------------------------------------------------------------->
<div class="row portfolio 2021 all">
<div class="col-md-12">
<h1 class="page-header">
2021
</h1>
</div>
</div>
<!-- ------------------- UIST 2021----------------- -->
<div class="row portfolio uist 2021 all">
<div class="col-md-3">
<img class= "paperimage" src="img/uist2021/adroid.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
Adroid: Augmenting Hands-on Making with a Collaborative Robot (ACM UIST 2021)
</span>
</br>
<span class="paperauthors">
Rundong Tian and Eric Paulos
</span>
</br>
<span class="paperdetails">
Adroid1 enables users to borrow precision and accuracy from a robotic arm when using hand-held tools. When a tool is mounted to the robot, the user can hold and move the tool directly—Adroid measures the user’s applied forces and commands the robot to move in response. Depending on the tool and scenario, Adroid can selectively restrict certain motions. In the resulting interaction, the robot acts like a virtual “jig” which constrains the tool’s motion, augmenting the user’s accuracy, technique, and strength, while not diminishing their agency during open-ended fabrication tasks. We complement these hands-on interactions with projected augmented reality for visual feedback about the state of the system. We show how tools augmented by Adroid can support hands-on making and discuss how it can be configured to support other tasks within and beyond fabrication.
</span>
</br>
</br>
<a href="https://dl.acm.org/doi/10.1145/3472749.3474749" class="btn btn-doi" alt="doi" target="_blank">DOI</a>
<a href="https://dl.acm.org/doi/pdf/10.1145/3472749.3474749" class="btn btn-pdf" alt="pdf" target="_blank" >PDF</a>
<a href="https://www.youtube.com/watch?v=jICf8EcOr7U" class="btn btn-vdo" alt="video" target="_blank">Video</a>
<a href="https://rutian.github.io/projects/adroid/" class="btn btn-pages" alt="page" target="_blank">Page</a>
</div>
</div>
<div class="row portfolio uist 2021 all">
<div class="col-md-3">
<img class= "paperimage" src="img/uist2021/fab-hydro.png"/>
</div>
<div class="col-md-9">
<span class="papertitle">
FabHydro: Printing Interactive Hydraulic Devices with an Affordable SLA 3D Printer (ACM UIST 2021)
</span>
</br>
<span class="paperauthors">
Zeyu Yan, Huaishu Peng
</span>
</br>
<span class="paperdetails">
We introduce FabHydro, a set of rapid and low-cost methods to prototype interactive hydraulic devices based on an off-the-shelf 3D printer and flexible photosensitive resin. We first present printer settings and custom support structures to warrant the successful print of flexible and deformable objects. We then demonstrate two printing methods to seal the transmission fluid inside these deformable structures: the Submerged Printing process that seals the liquid resin without manual assembly, and the Printing with Plugs method that allows the use of different transmission fluids without modification to the printer. Following the printing methods, we report a design space with a range of 3D printable primitives, including the hydraulic generator, transmitter, and actuator. To demonstrate the feasibility of our approaches and the breadth of new designs that they enable, we showcase a set of examples from a printed robotic gripper that can be operated at a distance to a mobile phone stand that serves as a status reminder by repositioning the user’s phone. We conclude with a discussion of our approach’s limitations and possible future improvements.