-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathengine.py
163 lines (143 loc) · 6.53 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from pathlib import Path
from time import time
import os
import hfai
import numpy as np
import torch
import logging
import sys
from data import compile_data, compile_dataloader
from evaluation.iou import eval_iou, get_batch_iou, onehot_encoding
from model import compile_model
from tools import distribute_utils
from model.losses import build_criterion
def main(local_rank, config):
torch.cuda.set_device(local_rank)
# init distributed mode
print('init distribution')
distribute_utils.init_distributed_config(local_rank, config.runtime)
distribute_utils.init_distributed_mode(config.runtime)
rank = distribute_utils.get_rank()
print(f'rank {rank}, local_rank {local_rank}')
if rank in [-1, 0]:
print(f'logging to {os.path.join(config.runtime.output_dir, "results.log")}')
logging.basicConfig(
filename=os.path.join(config.runtime.output_dir, "results.log"),
filemode='w',
format='%(asctime)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO)
else:
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger()
logger.addHandler(logging.StreamHandler(sys.stdout))
# fix the seed for reproducibility
logging.info('Fix seed ...')
distribute_utils.fix_seed(config.runtime)
# init data
logging.info('Loading data ...')
dataset_train, dataset_val = compile_data(config.data)
sampler_train, train_loader, val_loader = compile_dataloader(config.data, dataset_train, dataset_val)
# load model
logging.info('Loading model ...')
model = compile_model(config.data, config.model)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
# model to distributed mode
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank],
find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info(f'number of params: {n_parameters}')
optimization_config = config.optimization
optimizer = torch.optim.Adam(
model_without_ddp.parameters(),
lr=optimization_config['lr'],
weight_decay=optimization_config['weight_decay']
)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, optimization_config['lr_drop_step'],
optimization_config['lr_drop_rate'])
# init losses
criterion = build_criterion(config.model)
criterion.cuda()
# load if latest.pt model exists
output_dir = Path(config.runtime.output_dir)
config.runtime.start_epoch = 0
if Path(output_dir / "latest.pt").exists():
config.runtime.resume = Path(output_dir / "latest.pt")
if config.runtime.resume:
checkpoint = torch.load(config.runtime.resume)
model_without_ddp.load_state_dict(checkpoint['model'])
if not config.runtime.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
config.runtime.start_epoch = checkpoint['epoch'] + 1
if config.runtime.eval:
if config.runtime.visualizer:
logging.info(f'visualize samples saved in {config.runtime.visualize_dir}')
iou = eval_iou(model, val_loader, visualizer=config.runtime.visualizer)
logging.info(
f"EVAL: "
f"IOU: {np.array2string(iou[1:].numpy(), precision=3, floatmode='fixed')}")
return
model.train()
batch_len = len(train_loader)
for epoch in range(config.runtime.start_epoch, config.runtime.nepochs):
logging.info(f"epoch {epoch}")
sampler_train.set_epoch(epoch)
iter_t = time()
for batchi, data_dict in enumerate(train_loader):
data_dict = {k: v.cuda() for k, v in data_dict.items()}
load_data_t = time()
optimizer.zero_grad()
semantic, embedding, direction = model(data_dict)
forward_t = time()
pred_dict = {
'semantic': semantic,
'direction': direction,
'instance': embedding
}
final_loss = criterion(pred_dict, data_dict)
final_loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimization.max_grad_norm)
optimizer.step()
backward_t = time()
if rank in [-1, 0] and batchi % (batch_len // 30 + 1) == 0:
intersects, union = get_batch_iou(onehot_encoding(semantic), data_dict['semantic_gt'].float())
iou = intersects / (union + 1e-7)
logging.info(
f"TRAIN[{epoch:>3d}]: [{batchi:>4d}/{batch_len - 1}] "
f"Data: {load_data_t - iter_t:>3.3f} "
f"Forward: {forward_t - load_data_t:>3.3f} "
f"Total: {backward_t - iter_t:>3.3f} "
f"Loss: {final_loss.item():>3.2f} "
f'LR: {optimizer.param_groups[0]["lr"]} '
f"IOU: {np.array2string(iou[1:].numpy(), precision=3, floatmode='fixed')}"
)
iter_t = time()
lr_scheduler.step()
# save checkpoint if going to suspend
if rank in [-1, 0] and hfai.receive_suspend_command():
model_name = "latest.pt"
distribute_utils.save_train_model_state(epoch, lr_scheduler, model, model_name, optimizer, output_dir,
config.runtime)
time.sleep(5)
hfai.go_suspend()
# normal save
if rank in [-1, 0] and epoch % config.runtime.eval_and_save_gap == 0:
model_name = f"{epoch:04d}.pt"
before_eval_t = time()
iou = eval_iou(model, val_loader)
after_eval_t = time()
logging.info(
f"EVAL[{epoch:>3d}]: "
f"TIME: {after_eval_t - before_eval_t:.2f} "
f"IOU: {np.array2string(iou[1:].numpy(), precision=3, floatmode='fixed')}"
)
model.train()
distribute_utils.save_train_model_state(
epoch, lr_scheduler, model,
model_name, optimizer, output_dir,
config.runtime
)