-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn-independent-SUMO.py
376 lines (299 loc) · 17 KB
/
dqn-independent-SUMO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""
dqn-independent-SUMO.py
Description:
Implementation of independent Q-Learning to be used on various environments from the PettingZoo
library. This file was modified from dqn-independent.py to support use of the sumo-rl traffic simulator library
https://github.com/LucasAlegre/sumo-rl which is not technically part of the PettingZoo module but
conforms to the Petting Zoo API. Configuration of this script is performed through a configuration file,
examples of which can be found in the experiments/ directory.
Note that experiments using the SUMO traffic simulator also require 'net' and 'route' files to configure
the environment.
Usage:
python dqn-indepndent-SUMO.py -c experiments/sumo-4x4-dqn-independent.config
References:
- https://github.com/LucasAlegre/sumo-rl
- https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
TODO: CAN THIS FILE BE DELETED now that dqn-independent-ps.py has been updated to support SUMO?
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import numpy as np
# TODO: fix conda environment to include the version of gym that has Monitor module
# from gym.wrappers import TimeLimit#, Monitor
from datetime import datetime
import random
import os
import csv
# SUMO dependencies
import sumo_rl
import sys
from sumo_utils.sumo_custom.sumo_custom_observation import CustomObservationFunction
from sumo_utils.sumo_custom.sumo_custom_reward import CreateSumoReward
# Config Parser
from marl_utils.MARLConfigParser import MARLConfigParser
from rl_core.actor_critic import QNetwork
from marl_utils.linear_schedule import LinearSchedule
from marl_utils.replay_buffer import ReplayBuffer
if __name__ == "__main__":
# Get config parameters
parser = MARLConfigParser()
args = parser.parse_args()
# The SUMO environment is slightly different from the defaul PettingZoo envs so set a flag to indicate if the SUMO env is being used
using_sumo = False
if args.gym_id == 'sumo':
using_sumo = True
# Make sure SUMO env variable is set
if 'SUMO_HOME' in os.environ:
tools = os.path.join(os.environ['SUMO_HOME'], 'tools')
sys.path.append(tools)
else:
sys.exit("Please declare the environment variable 'SUMO_HOME'")
if not args.seed:
args.seed = int(datetime.now())
# TRY NOT TO MODIFY: setup the environment
if args.gpu_id is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
experiment_time = str(datetime.now()).split('.')[0].replace(':','-')
experiment_name = "{}__N{}__exp{}__seed{}__{}".format(args.gym_id, args.N, args.exp_name, args.seed, experiment_time)
writer = SummaryWriter(f"runs/{experiment_name}")
writer.add_text('hyperparameters', "|param|value|\n|-|-|\n%s" % (
'\n'.join([f"|{key}|{value}|" for key, value in vars(args).items()])))
if args.prod_mode:
import wandb
wandb.init(project=args.wandb_project_name, entity=args.wandb_entity, sync_tensorboard=True, config=vars(args), name=experiment_name, monitor_gym=True, save_code=True)
writer = SummaryWriter(f"/tmp/{experiment_name}")
nn_dir = f"nn/{experiment_name}"
csv_dir = f"csv/{experiment_name}"
os.makedirs(f"{nn_dir}/critic_networks")
os.makedirs(f"{nn_dir}/actor_networks")
os.makedirs(csv_dir)
# TRY NOT TO MODIFY: seeding
device = torch.device('cuda' if torch.cuda.is_available() and args.cuda else 'cpu')
# Define an additional output file for the sumo-specific data
if using_sumo:
sumo_csv = "{}/_SUMO_alpha{}_gamma{}_{}".format(csv_dir, args.learning_rate, args.gamma, experiment_time)
print("\n=================== Environment Information ===================")
# Instantiate the environment
if using_sumo:
# Sumo must be created using the sumo-rl module
# Note we have to use the parallel env here to conform to this implementation of dqn
sumo_reward_function = CreateSumoReward(args=args)
env = sumo_rl.parallel_env(net_file=args.net,
route_file=args.route,
use_gui=True,
max_green=args.max_green,
min_green=args.min_green,
num_seconds=args.sumo_seconds,
reward_fn=sumo_reward_function,
observation_class=CustomObservationFunction,
sumo_warnings=False)
else:
print(" > ENV ARGS: {}".format(args.env_args))
exec(f"env = {args.gym_id}.parallel_env({args.env_args})")
agents = env.possible_agents
num_agents = len(env.possible_agents)
# TODO: these dictionaries are deprecated, use action_space & observation_space functions instead
action_spaces = env.action_spaces
observation_spaces = env.observation_spaces
agents = env.possible_agents
print(" > agents:\n {}".format(agents))
num_agents = len(env.possible_agents)
print(" > num_agents:\n {}".format(num_agents))
# TODO: these dictionaries are deprecated, use action_space & observation_space functions instead
action_spaces = env.action_spaces
print(" > action_spaces:\n {}".format(action_spaces))
observation_spaces = env.observation_spaces
print(" > observation_spaces:\n {}".format(observation_spaces))
# CSV files to save episode metrics during training
# system_episode_reward: the cumulative reward of all agents during the episode
# global_step: the global step in training
with open(f"{csv_dir}/td_loss.csv", "w", newline="") as csvfile:
csv_writer = csv.DictWriter(csvfile, fieldnames=agents+['system_loss', 'global_step'])
csv_writer.writeheader()
with open(f"{csv_dir}/episode_reward.csv", "w", newline="") as csvfile:
csv_writer = csv.DictWriter(csvfile, fieldnames=agents+['system_episode_reward', 'global_step'])
csv_writer.writeheader()
# system_episode_max_speed: Maximum speed observed by all agents during an episode
# system_episode_min_max_speed: The lowest of all maximum speeds observed by all agents during an episode
# i.e. if four agents observed max speeds of [6.6, 7.0, 10.0, 12.0] during the episode,
# system_episode_min_max_speed would return 6.6 and system_episode_max_speed would return 12.0
with open(f"{csv_dir}/episode_max_speeds.csv", "w", newline="") as csvfile:
csv_writer = csv.DictWriter(csvfile, fieldnames=agents+['system_episode_max_speed', 'system_episode_min_max_speed', 'global_step'])
csv_writer.writeheader()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
env.reset(seed=args.seed)
for agent in agents:
action_spaces[agent].seed(args.seed)
observation_spaces[agent].seed(args.seed)
# assert isinstance(action_spaces[agent], Discrete), "only discrete action space is supported"
# respect the default timelimit
# assert isinstance(env.action_space, Discrete), "only discrete action space is supported"
# TODO: Monitor was not working
# if args.capture_video:
# env = Monitor(env, f'videos/{experiment_name}')
# Initialize data structures for training
rb = {} # Dictionary for storing replay buffers (maps agent to a replay buffer)
q_network = {} # Dictionary for storing q-networks (maps agent to a q-network)
target_network = {} # Dictionary for storing target networks (maps agent to a network)
optimizer = {} # Dictionary for storing optimizers for each RL problem
for agent in agents:
observation_space_shape = tuple(shape * num_agents for shape in observation_spaces[agent].shape) if args.global_obs else observation_spaces[agent].shape
rb[agent] = ReplayBuffer(args.buffer_size)
q_network[agent] = QNetwork(observation_space_shape, action_spaces[agent].n).to(device)
target_network[agent] = QNetwork(observation_space_shape, action_spaces[agent].n).to(device)
target_network[agent].load_state_dict(q_network[agent].state_dict()) # Intialize the target network the same as the main network
optimizer[agent] = optim.Adam(q_network[agent].parameters(), lr=args.learning_rate) # All agents use the same optimizer for training
loss_fn = nn.MSELoss() # TODO: should the loss function be configurable?
print(device.__repr__())
print(q_network[agent]) # network of last agent
# TRY NOT TO MODIFY: start the game
obses, _ = env.reset()
# Global states
if args.global_obs:
global_obs = np.hstack(list(obses.values()))
obses = {agent: global_obs for agent in agents}
if args.render:
env.render() # TODO: verify that the sumo env supports render
episode_rewards = {agent: 0 for agent in agents} # Dictionary that maps the each agent to its cumulative reward each episode
episode_max_speeds = {agent: [] for agent in agents} # Dictionary that maps each agent to the maximum speed observed at each step of the agent's episode
actions = {agent: None for agent in agents} # Dictionary that maps each agent to the action it selected
losses = {agent: None for agent in agents} # Dictionary that maps each agent to the loss values for its critic network
lir_1 = 0
uir_1 = 0
var_1 = 0
cnt = 0
for global_step in range(args.total_timesteps):
# ALGO LOGIC: put action logic here
epsilon = LinearSchedule(args.start_e, args.end_e, args.exploration_fraction*args.total_timesteps, global_step)
# Set the action for each agent
for agent in agents:
if random.random() < epsilon:
actions[agent] = action_spaces[agent].sample()
else:
logits = q_network[agent].forward(obses[agent].reshape((1,)+obses[agent].shape))
actions[agent] = torch.argmax(logits, dim=1).tolist()[0]
# TRY NOT TO MODIFY: execute the game and log data.
next_obses, rewards, dones, _, _ = env.step(actions)
# Global states
if args.global_obs:
global_obs = np.hstack(list(next_obses.values()))
next_obses = {agent: global_obs for agent in agents}
if args.render:
env.render()
# Extract performance about how we're doing so far
lir_1 += min(rewards.values()) # Accumulated min reward received by any agent this step
uir_1 += max(rewards.values()) # Accumulated max reward received by any agent this step
var_1 += np.var(list(rewards.values())) # Accumulated variance of rewards received by all agents this step
cnt += 1
# Update the networks for each agent
for agent in agents:
episode_rewards[agent] += rewards[agent]
# TODO: need to modify this for global observations
episode_max_speeds[agent].append(next_obses[agent][-1]) # max speed is the last element of the custom observation array
# ALGO LOGIC: training.
rb[agent].put((obses[agent], actions[agent], rewards[agent], next_obses[agent], dones[agent]))
if global_step > args.learning_starts and global_step % args.train_frequency == 0:
s_obses, s_actions, s_rewards, s_next_obses, s_dones = rb[agent].sample(args.batch_size)
with torch.no_grad():
target_max = torch.max(target_network[agent].forward(s_next_obses), dim=1)[0]
td_target = torch.Tensor(s_rewards).to(device) + args.gamma * target_max * (1 - torch.Tensor(s_dones).to(device))
old_val = q_network[agent].forward(s_obses).gather(1, torch.LongTensor(s_actions).view(-1,1).to(device)).squeeze()
loss = loss_fn(td_target, old_val)
losses[agent] = loss.item()
if global_step % 100 == 0:
writer.add_scalar("losses/td_loss/" + agent, loss, global_step)
# optimize the model
optimizer[agent].zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(list(q_network[agent].parameters()), args.max_grad_norm)
optimizer[agent].step()
# update the target network
if global_step % args.target_network_frequency == 0:
target_network[agent].load_state_dict(q_network[agent].state_dict())
if global_step % args.nn_save_freq == 0:
for a in agents:
torch.save(q_network[a].state_dict(), f"{nn_dir}/{global_step}-{a}.pt")
# TRY NOT TO MODIFY: CRUCIAL step easy to overlook
obses = next_obses
if global_step > args.learning_starts and global_step % args.train_frequency == 0:
if global_step % 100 == 0:
system_loss = sum(list(losses.values()))
writer.add_scalar("losses/system_td_loss/", system_loss, global_step)
with open(f"{csv_dir}/td_loss.csv", "a", newline="") as csvfile:
csv_writer = csv.DictWriter(csvfile, fieldnames=agents+['system_loss', 'global_step'])
csv_writer.writerow({**losses, **{'system_loss': system_loss, 'global_step': global_step}})
# If all agents are done, log the results and reset the evnironment to continue training
if np.prod(list(dones.values())) or global_step % args.max_cycles == args.max_cycles-1:
system_episode_reward = sum(list(episode_rewards.values())) # Accumulated reward of all agents
# Calculate the maximum of all max speeds observed from each agent during the episode
agent_max_speeds = {agent:0 for agent in agents}
for agent in agents:
agent_max_speeds[agent] = max(episode_max_speeds[agent])
system_episode_max_speed = max(list(agent_max_speeds.values()))
system_episode_min_max_speed = min(list(agent_max_speeds.values()))
print(" >>> agent_max_speeds {}".format(agent_max_speeds))
print(" >>> system_episode_max_speed {}".format(system_episode_max_speed))
print(" >>> system_episode_min_max_speed {}".format(system_episode_min_max_speed))
# TRY NOT TO MODIFY: record rewards for plotting purposes
print(f" >>> global_step={global_step}, system_episode_reward={system_episode_reward}")
diff_1 = uir_1-lir_1
# var_1 = var_1/(cnt-1e-7)
lir_2 = min(episode_rewards.values())
uir_2 = max(episode_rewards.values())
diff_2 = uir_2-lir_2
var_2 = np.var(list(episode_rewards.values()))
print(f" >>> system_episode_diff_1={diff_1}")
print(f" >>> uir1={uir_1}")
print(f" >>> lir1={lir_1}")
print(f" >>> system_variance1={var_1}")
print(f" >>> system_episode_diff_2={diff_2}")
print(f" >>> uir2={uir_2}")
print(f" >>> lir2={lir_2}")
print(f" >>> system_variance2={var_2}")
# Logging should only be done after we've started training, up until then, the agents are just getting experience
if global_step > args.learning_starts:
for agent in agents:
writer.add_scalar("charts/episode_reward/" + agent, episode_rewards[agent], global_step)
writer.add_scalar("charts/episode_reward/uir_1", uir_1, global_step)
writer.add_scalar("charts/episode_reward/lir_1", lir_1, global_step)
writer.add_scalar("charts/episode_reward/diff_1", diff_1, global_step)
writer.add_scalar("charts/episode_reward/var_1", var_1, global_step)
writer.add_scalar("charts/episode_reward/uir_2", uir_2, global_step)
writer.add_scalar("charts/episode_reward/lir_2", lir_2, global_step)
writer.add_scalar("charts/episode_reward/diff_2", diff_2, global_step)
writer.add_scalar("charts/episode_reward/var_2", var_2, global_step)
writer.add_scalar("charts/epsilon/", epsilon, global_step)
writer.add_scalar("charts/system_episode_reward/", system_episode_reward, global_step)
with open(f"{csv_dir}/episode_reward.csv", "a", newline="") as csvfile:
csv_writer = csv.DictWriter(csvfile, fieldnames=agents+['system_episode_reward', 'global_step'])
csv_writer.writerow({**episode_rewards, **{'system_episode_reward': system_episode_reward, 'global_step': global_step}})
with open(f"{csv_dir}/episode_max_speeds.csv", "a", newline="") as csvfile:
csv_writer = csv.DictWriter(csvfile, fieldnames=agents+['system_episode_max_speed', 'system_episode_min_max_speed', 'global_step'])
csv_writer.writerow({**agent_max_speeds, **{'system_episode_max_speed': system_episode_max_speed,
'system_episode_min_max_speed': system_episode_min_max_speed,
'global_step': global_step}})
# If we're using the SUMO env, also save some data specific to that environment
if using_sumo:
env.unwrapped.save_csv(sumo_csv, global_step)
# Reset the env to continue training
obses, _ = env.reset()
lir_1 = 0
uir_1 = 0
var_1 = 0
cnt = 0
# Global states
if args.global_obs:
global_obs = np.hstack(list(obses.values()))
obses = {agent: global_obs for agent in agents}
if args.render:
env.render()
episode_rewards = {agent: 0 for agent in agents}
episode_max_speeds = {agent: [0] for agent in agents}
actions = {agent: None for agent in agents}
env.close()
writer.close()