-
Notifications
You must be signed in to change notification settings - Fork 2
/
train-erc-text-hp.py
153 lines (126 loc) · 4.16 KB
/
train-erc-text-hp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""Hyperparameter tuning script"""
import argparse
import json
import logging
import os
import torch
import yaml
from transformers import (AutoModelForSequenceClassification, AutoTokenizer,
Trainer, TrainingArguments)
from utils import ErcTextDataset, get_num_classes
import warnings
warnings.filterwarnings("ignore")
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
def main(
WEIGHT_DECAY: float,
WARMUP_RATIO: float,
NUM_TRAIN_EPOCHS: int,
HP_ONLY_UPTO: int,
OUTPUT_DIR: str,
DATASET,
BATCH_SIZE: int,
model_checkpoint: str,
roberta: str,
speaker_mode: str,
num_past_utterances: int,
num_future_utterances: int,
HP_N_TRIALS: int,
SEED: int,
**kwargs,
):
"""Perform automatic hyperparameter tuning using optuna. Only learning rate is tuned."""
logging.info(
f"automatic hyperparameter tuning with speaker_mode: {speaker_mode}, "
f"num_past_utterances: {num_past_utterances}, "
f"num_future_utterances: {num_future_utterances}"
)
EVALUATION_STRATEGY = "epoch"
LOGGING_STRATEGY = "epoch"
SAVE_STRATEGY = "no"
ROOT_DIR = "./multimodal-datasets/"
if model_checkpoint is None:
model_checkpoint = f"roberta-{roberta}"
PER_DEVICE_TRAIN_BATCH_SIZE = BATCH_SIZE
PER_DEVICE_EVAL_BATCH_SIZE = BATCH_SIZE * 2
LOAD_BEST_MODEL_AT_END = False
if torch.cuda.is_available():
FP16 = True
else:
FP16 = False
NUM_CLASSES = get_num_classes(DATASET)
args = TrainingArguments(
output_dir=OUTPUT_DIR,
evaluation_strategy=EVALUATION_STRATEGY,
per_device_train_batch_size=PER_DEVICE_TRAIN_BATCH_SIZE,
per_device_eval_batch_size=PER_DEVICE_EVAL_BATCH_SIZE,
load_best_model_at_end=LOAD_BEST_MODEL_AT_END,
logging_strategy=LOGGING_STRATEGY,
save_strategy=SAVE_STRATEGY,
seed=SEED,
fp16=FP16,
weight_decay=WEIGHT_DECAY,
warmup_ratio=WARMUP_RATIO,
num_train_epochs=NUM_TRAIN_EPOCHS,
)
def model_init():
return AutoModelForSequenceClassification.from_pretrained(
model_checkpoint, num_labels=NUM_CLASSES
)
ds_train = ErcTextDataset(
DATASET=DATASET,
SPLIT="train",
speaker_mode=speaker_mode,
num_past_utterances=num_past_utterances,
num_future_utterances=num_future_utterances,
model_checkpoint=model_checkpoint,
ONLY_UPTO=HP_ONLY_UPTO,
ROOT_DIR=ROOT_DIR,
SEED=SEED,
)
ds_val = ErcTextDataset(
DATASET=DATASET,
SPLIT="val",
speaker_mode=speaker_mode,
num_past_utterances=num_past_utterances,
num_future_utterances=num_future_utterances,
model_checkpoint=model_checkpoint,
ONLY_UPTO=HP_ONLY_UPTO,
ROOT_DIR=ROOT_DIR,
SEED=SEED,
)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)
trainer = Trainer(
model_init=model_init,
args=args,
train_dataset=ds_train,
eval_dataset=ds_val,
tokenizer=tokenizer,
)
def my_hp_space(trial):
return {
"learning_rate": trial.suggest_float("learning_rate", 1e-9, 1e-4, log=True),
}
best_run = trainer.hyperparameter_search(
direction="minimize", hp_space=my_hp_space, n_trials=HP_N_TRIALS
)
logging.info(f"best hyper parameters found at {best_run}")
with open(os.path.join(OUTPUT_DIR, "hp.json"), "w") as stream:
json.dump(best_run.hyperparameters, stream, indent=4)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="erc RoBERTa text huggingface training"
)
parser.add_argument("--OUTPUT-DIR", type=str)
parser.add_argument("--SEED", type=int)
args = parser.parse_args()
args = vars(args)
with open("./train-erc-text.yaml", "r") as stream:
args_ = yaml.safe_load(stream)
for key, val in args_.items():
args[key] = val
logging.info(f"arguments given to {__file__}: {args}")
main(**args)