From 06bbec5582f90b58e636349f02771b633350b9fd Mon Sep 17 00:00:00 2001 From: "Chun Tian (binghe)" Date: Thu, 4 Jan 2024 14:02:14 +1100 Subject: [PATCH] =?UTF-8?q?[lambda]=20B=C3=B6hm=20tree=20with=20basic=20pr?= =?UTF-8?q?operties?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- examples/lambda/barendregt/boehmScript.sml | 484 ++++++++++++++++-- examples/lambda/barendregt/chap3Script.sml | 16 + .../barendregt/head_reductionScript.sml | 113 ++-- examples/lambda/barendregt/solvableScript.sml | 319 +++++++++++- examples/lambda/basics/appFOLDLScript.sml | 6 + src/coalgebras/ltreeScript.sml | 164 +++++- src/list/src/listScript.sml | 8 +- 7 files changed, 992 insertions(+), 118 deletions(-) diff --git a/examples/lambda/barendregt/boehmScript.sml b/examples/lambda/barendregt/boehmScript.sml index 46d91ff1d7..2a1a0d0333 100644 --- a/examples/lambda/barendregt/boehmScript.sml +++ b/examples/lambda/barendregt/boehmScript.sml @@ -12,7 +12,7 @@ open optionTheory arithmeticTheory pred_setTheory listTheory rich_listTheory open binderLib nomsetTheory termTheory appFOLDLTheory chap2Theory chap3Theory head_reductionTheory standardisationTheory solvableTheory reductionEval; -open horeductionTheory takahashiTheory; +open horeductionTheory takahashiS3Theory; val _ = new_theory "boehm"; @@ -20,6 +20,409 @@ val _ = temp_delsimps ["lift_disj_eq", "lift_imp_disj"]; val o_DEF = combinTheory.o_DEF; +(*---------------------------------------------------------------------------* + * Boehm tree + *---------------------------------------------------------------------------*) + +(* The type of Boehm tree: + + For each ltree node, ‘NONE’ represents {\bot} (for unsolvable terms), while + ‘SOME (vs,y)’ represents ‘LAMl vs (VAR y)’. This separation of vs and y has + at least two advantages: + + 1. ‘set vs’ is the set of binding variables (BV) at that ltree node. + 2. ‘LAMl vs (VAR y)’ can be easily "expanded" (w.r.t. eta reduction) into terms + such as ‘LAMl (vs ++ [z0;z1]) t’ (with two extra children ‘z0’ and ‘z1’) + without changing the head variable (VAR y). + *) +Type boehm_tree[pp] = “:(string list # string) option ltree” + +(* Definition 10.1.9 [1, p.221] (Effective Boehm tree) + + NOTE: The setup of ‘X UNION FV M’ when calling ‘FRESH_list’ guarentees that + the generated Boehm tree is "correct" no matter what X is supplied. + + The word "correct" means that the binding lists of each node in the generated + Boehm tree do not capture free variables in the children nodes. Thus, if we + further translate each node from ‘string list # string’ to ‘num # num’ w.r.t. + de Bruijn encodings, the resulting Boehm tree should be unique for all X. + + 2024 UPDATE: Now BT_generator takes (X,M) where X is the initial X. Then, + for each generating children, the created fresh binding list ‘vs’ at current + level must be added into X for the next level. This is because the children + terms may contain free variables in ‘vs’, which was bound (thus not included + in FV M). When choosing binding variables for the next level, ‘vs’ must be + avoided too, for a "correct" generation. -- Chun Tian, 4 gen 2024 + *) +Definition BT_generator_def : + BT_generator (X,M) = + if solvable M then + let M0 = principle_hnf M; + n = LAMl_size M0; + vs = FRESH_list n (X UNION FV M); + M1 = principle_hnf (M0 @* (MAP VAR vs)); + Ms = hnf_children M1; + l = MAP ($, (X UNION set vs)) Ms; + y = hnf_headvar M1; + h = (vs,y) + in + (SOME h, fromList l) + else + (NONE , LNIL) +End + +Definition BT_def : + BT = ltree_unfold BT_generator +End + +Overload BTe = “\X M. BT (X,M)” + +(* BTe is actually the Curry-ized version of BT *) +Theorem BTe_def : + !X M. BTe X M = CURRY BT X M +Proof + rw [pairTheory.CURRY_DEF] +QED + +(* This is the meaning of Boehm tree nodes, ‘fromNote’ translated from BT nodes + to lambda terms in form of ‘SOME (LAMl vs (VAR y))’ or ‘NONE’. + *) +Definition fromNode_def : + fromNode = OPTION_MAP (\(vs,y). LAMl vs (VAR y)) +End + +(* Boehm tree of a single (free) variable ‘VAR s’ *) +Definition BT_VAR_def : + BT_VAR s :boehm_tree = Branch (SOME (NIL,s)) LNIL +End + +(* Remarks 10.1.3 (iii) [1, p.216]: unsolvable terms all have the same Boehm + tree (‘bot’). The following overloaded ‘bot’ may be returned by + ‘THE (ltree_lookup A p)’ when looking up a terminal node of the Boehm tree. + *) +Overload bot = “Branch NONE (LNIL :boehm_tree llist)” + +(* Another form of ‘bot’, usually returned by “THE (ltree_el A p)”. *) +Overload bot = “(NONE :(string list # string) option, SOME 0)” + +(* Unicode name: "base" *) +val _ = Unicode.unicode_version {u = UTF8.chr 0x22A5, tmnm = "bot"}; +val _ = TeX_notation {hol = "bot", TeX = ("\\ensuremath{\\bot}", 1)}; + +(* some easy theorems about Boehm trees of unsolvable terms *) +Theorem BT_of_unsolvables : + !X M. unsolvable M ==> BTe X M = bot +Proof + rw [BT_def, BT_generator_def, ltree_unfold, ltree_map] +QED + +Theorem BT_of_unsolvables_EQ : + !X M N. unsolvable M /\ unsolvable N ==> BTe X M = BTe X N +Proof + rw [BT_of_unsolvables] +QED + +Theorem BT_finite_branching : + !X M. finite_branching (BTe X M) +Proof + rpt GEN_TAC + >> irule finite_branching_coind' + >> Q.EXISTS_TAC ‘\b. ?X M. b = BTe X M’ + >> rw [] >- (qexistsl_tac [‘X’, ‘M’] >> rw []) + (* stage work *) + >> qabbrev_tac ‘A = BTe X M’ + >> qabbrev_tac ‘a = ltree_node A’ + >> qabbrev_tac ‘ts = ltree_children A’ + >> qexistsl_tac [‘a’, ‘ts’] + (* A = Branch a ts *) + >> CONJ_TAC >- rw [Abbr ‘a’, Abbr ‘ts’] + (* LFINITE ts *) + >> CONJ_TAC + >- rw [Abbr ‘A’, Abbr ‘ts’, BT_def, BT_generator_def, Once ltree_unfold, + LFINITE_fromList] + >> qabbrev_tac ‘P = \b. ?X M. b = BTe X M’ + >> rw [Abbr ‘A’, Abbr ‘ts’, BT_def, BT_generator_def, Once ltree_unfold] + >> rw [every_fromList_EVERY, LMAP_fromList, EVERY_MAP, Abbr ‘P’, EVERY_MEM] + >> qabbrev_tac ‘M0 = principle_hnf M’ + >> qabbrev_tac ‘n = LAMl_size M0’ + >> qabbrev_tac ‘vs = FRESH_list n (X UNION FV M)’ + >> qabbrev_tac ‘M1 = principle_hnf (M0 @* MAP VAR vs)’ + >> rename1 ‘MEM N (hnf_children M1)’ + >> qexistsl_tac [‘X UNION set vs’, ‘N’] >> rw [BT_def] +QED + +(* Given a hnf ‘M0’ and a shared binding variable list ‘vs’ + + hnf_tac adds the following abbreviation and new assumptions: + + Abbrev (M1 = principle_hnf (M0 @* MAP VAR (TAKE (LAMl_size M0) vs))) + M0 = LAMl (TAKE (LAMl_size M0) vs) (VAR y @* args) + M1 = VAR y @* args + + where the names "M1", "y" and "args" can be chosen from inputs. + *) +fun hnf_tac (M0, vs, M1, y, args) = let + val n = “LAMl_size ^M0” in + qabbrev_tac ‘^M1 = principle_hnf (^M0 @* MAP VAR (TAKE ^n ^vs))’ + >> Know ‘?^y ^args. ^M0 = LAMl (TAKE ^n ^vs) (VAR ^y @* ^args)’ + >- (irule (iffLR hnf_cases_shared) >> rw []) + >> STRIP_TAC + >> Know ‘^M1 = VAR ^y @* ^args’ + >- (qunabbrev_tac ‘^M1’ \\ + Q.PAT_ASSUM ‘^M0 = LAMl (TAKE ^n ^vs) (VAR ^y @* ^args)’ + (fn th => REWRITE_TAC [Once th]) \\ + MATCH_MP_TAC principle_hnf_beta_reduce >> rw [hnf_appstar]) + >> DISCH_TAC +end; + +(* Proposition 10.1.6 [1, p.219] (beta-equivalent terms have the same Boehm tree) + + NOTE: X is an sufficiently large finite set of names covering all FVs of + M and N. The Boehm trees of M and N are generated with help of this set. + + TODO: this theorem can be improved to an iff: M == N <=> BTe X M = BTe X N + *) +Theorem lameq_BT_cong : + !X M N. FINITE X /\ FV M UNION FV N SUBSET X ==> + M == N ==> BTe X M = BTe X N +Proof + RW_TAC std_ss [] + >> reverse (Cases_on ‘solvable M’) + >- (‘unsolvable N’ by METIS_TAC [lameq_solvable_cong] \\ + rw [BT_of_unsolvables]) + >> ‘solvable N’ by METIS_TAC [lameq_solvable_cong] + (* applying ltree_bisimulation *) + >> rw [ltree_bisimulation] + (* NOTE: ‘solvable P /\ solvable Q’ cannot be added into the next relation *) + >> Q.EXISTS_TAC ‘\x y. ?P Q Y. FINITE Y /\ FV P UNION FV Q SUBSET Y /\ + P == Q /\ x = BTe Y P /\ y = BTe Y Q’ + >> BETA_TAC + >> CONJ_TAC >- (qexistsl_tac [‘M’, ‘N’, ‘X’] >> rw []) + (* stage work *) + >> qx_genl_tac [‘a1’, ‘ts1’, ‘a2’, ‘ts2’] >> STRIP_TAC + >> qabbrev_tac ‘P0 = principle_hnf P’ + >> qabbrev_tac ‘Q0 = principle_hnf Q’ + >> qabbrev_tac ‘n = LAMl_size P0’ + >> qabbrev_tac ‘n' = LAMl_size Q0’ + >> qabbrev_tac ‘vs = FRESH_list n (Y UNION FV P)’ + >> qabbrev_tac ‘vs' = FRESH_list n' (Y UNION FV Q)’ + >> qabbrev_tac ‘P1 = principle_hnf (P0 @* MAP VAR vs)’ + >> qabbrev_tac ‘Q1 = principle_hnf (Q0 @* MAP VAR vs')’ + >> qabbrev_tac ‘Ps = hnf_children P1’ + >> qabbrev_tac ‘Qs = hnf_children Q1’ + >> qabbrev_tac ‘y = hnf_headvar P1’ + >> qabbrev_tac ‘y' = hnf_headvar Q1’ + (* applying ltree_unfold *) + >> Q.PAT_X_ASSUM ‘_ = BTe Y Q’ MP_TAC + >> simp [BT_def, Once ltree_unfold, BT_generator_def] + >> Q.PAT_X_ASSUM ‘_ = BTe Y P’ MP_TAC + >> simp [BT_def, Once ltree_unfold, BT_generator_def] + >> NTAC 2 STRIP_TAC + (* easy case: unsolvable P (and Q) *) + >> reverse (Cases_on ‘solvable P’) + >- (‘unsolvable Q’ by PROVE_TAC [lameq_solvable_cong] >> fs [] \\ + rw [llist_rel_def, LLENGTH_MAP]) + (* now both P and Q are solvable *) + >> ‘solvable Q’ by PROVE_TAC [lameq_solvable_cong] + (* clean up definitions of vs and vs' by using ‘FV M UNION FV N SUBSET X’ *) + >> Know ‘Y UNION FV P = Y /\ Y UNION FV Q = Y’ + >- (Q.PAT_X_ASSUM ‘FV P UNION FV Q SUBSET Y’ MP_TAC >> SET_TAC []) + >> DISCH_THEN (fs o wrap) + >> Know ‘n = n' /\ vs = vs'’ + >- (reverse CONJ_ASM1_TAC >- rw [Abbr ‘vs’, Abbr ‘vs'’] \\ + qunabbrevl_tac [‘n’, ‘n'’, ‘P0’, ‘Q0’] \\ + MATCH_MP_TAC lameq_principle_hnf_size_eq' >> art []) + (* clean up now duplicated abbreviations: n' and vs' *) + >> qunabbrevl_tac [‘n'’, ‘vs'’] + >> DISCH_THEN (rfs o wrap o GSYM) + (* proving y = y' *) + >> STRONG_CONJ_TAC + >- (MP_TAC (Q.SPECL [‘Y’, ‘P’, ‘Q’, ‘P0’, ‘Q0’, ‘n’, ‘vs’, ‘P1’, ‘Q1’] + lameq_principle_hnf_headvar_eq') >> simp []) + >> DISCH_THEN (rfs o wrap o GSYM) + >> qunabbrevl_tac [‘y’, ‘y'’] + (* applying lameq_principle_hnf_thm' *) + >> MP_TAC (Q.SPECL [‘Y’, ‘P’, ‘Q’, ‘P0’, ‘Q0’, ‘n’, ‘vs’, ‘P1’, ‘Q1’] + lameq_principle_hnf_thm') >> simp [] + >> rw [llist_rel_def, LLENGTH_MAP, EL_MAP] + >> Cases_on ‘i < LENGTH Ps’ >> fs [LNTH_fromList, EL_MAP] + >> Q.PAT_X_ASSUM ‘(Y UNION set vs,EL i Ps) = z’ (ONCE_REWRITE_TAC o wrap o SYM) + >> Q.PAT_X_ASSUM ‘(Y UNION set vs,EL i Qs) = z'’ (ONCE_REWRITE_TAC o wrap o SYM) + >> qexistsl_tac [‘EL i Ps’, ‘EL i Qs’, ‘Y UNION set vs’] >> simp [] + (* preparing for hnf_children_FV_SUBSET + + Here, once again, we need to get suitable explicit forms of P0 and Q0, + to show that, P1 and Q1 are absfree hnf. + *) + >> ‘hnf P0 /\ hnf Q0’ by PROVE_TAC [hnf_principle_hnf, solvable_iff_has_hnf] + >> qabbrev_tac ‘n = LAMl_size Q0’ + >> ‘ALL_DISTINCT vs /\ LENGTH vs = n /\ DISJOINT (set vs) Y’ + by rw [Abbr ‘vs’, FRESH_list_def] + >> Know ‘DISJOINT (set vs) (FV P0)’ + >- (MATCH_MP_TAC DISJOINT_SUBSET \\ + Q.EXISTS_TAC ‘Y’ >> art [] \\ + MATCH_MP_TAC SUBSET_TRANS \\ + Q.EXISTS_TAC ‘FV P’ >> art [] \\ + qunabbrev_tac ‘P0’ \\ + MATCH_MP_TAC principle_hnf_FV_SUBSET' >> art []) + >> DISCH_TAC + >> Know ‘DISJOINT (set vs) (FV Q0)’ + >- (MATCH_MP_TAC DISJOINT_SUBSET \\ + Q.EXISTS_TAC ‘Y’ >> art [] \\ + MATCH_MP_TAC SUBSET_TRANS \\ + Q.EXISTS_TAC ‘FV Q’ >> art [] \\ + qunabbrev_tac ‘Q0’ \\ + MATCH_MP_TAC principle_hnf_FV_SUBSET' >> art []) + >> DISCH_TAC + (* NOTE: the next two hnf_tac will refine P1 and Q1 *) + >> qunabbrevl_tac [‘P1’, ‘Q1’] + >> hnf_tac (“P0 :term”, “vs :string list”, + “P1 :term”, “y :string”, “args :term list”) + >> hnf_tac (“Q0 :term”, “vs :string list”, + “Q1 :term”, “y' :string”, “args' :term list”) + >> ‘TAKE n vs = vs’ by rw [TAKE_LENGTH_ID_rwt] + >> POP_ASSUM (rfs o wrap) + (* refine P1 and Q1 again for clear assumptions using them *) + >> qunabbrevl_tac [‘P1’, ‘Q1’] + >> qabbrev_tac ‘P1 = principle_hnf (P0 @* MAP VAR vs)’ + >> qabbrev_tac ‘Q1 = principle_hnf (Q0 @* MAP VAR vs)’ + (* applying hnf_children_FV_SUBSET *) + >> CONJ_TAC + >| [ (* goal 1 (of 2) *) + Know ‘!i. i < LENGTH Ps ==> FV (EL i Ps) SUBSET FV P1’ + >- (MATCH_MP_TAC hnf_children_FV_SUBSET >> rw [Abbr ‘Ps’, hnf_appstar]) \\ + DISCH_TAC \\ + MATCH_MP_TAC SUBSET_TRANS >> Q.EXISTS_TAC ‘FV P1’ \\ + CONJ_TAC >- (FIRST_X_ASSUM MATCH_MP_TAC >> art []) \\ + MATCH_MP_TAC SUBSET_TRANS >> Q.EXISTS_TAC ‘FV P0 UNION set vs’ \\ + CONJ_TAC >- simp [FV_LAMl] \\ + Suff ‘FV P0 SUBSET Y’ >- SET_TAC [] \\ + MATCH_MP_TAC SUBSET_TRANS >> Q.EXISTS_TAC ‘FV P’ \\ + reverse CONJ_TAC >- art [] (* FV P SUBSET Y *) \\ + qunabbrev_tac ‘P0’ >> MATCH_MP_TAC principle_hnf_FV_SUBSET' >> art [], + (* goal 2 (of 2) *) + Know ‘!i. i < LENGTH Qs ==> FV (EL i Qs) SUBSET FV Q1’ + >- (MATCH_MP_TAC hnf_children_FV_SUBSET >> rw [Abbr ‘Qs’, hnf_appstar]) \\ + DISCH_TAC \\ + MATCH_MP_TAC SUBSET_TRANS >> Q.EXISTS_TAC ‘FV Q1’ \\ + CONJ_TAC >- (FIRST_X_ASSUM MATCH_MP_TAC >> art []) \\ + MATCH_MP_TAC SUBSET_TRANS >> Q.EXISTS_TAC ‘FV Q0 UNION set vs’ \\ + CONJ_TAC >- simp [FV_LAMl] \\ + Suff ‘FV Q0 SUBSET Y’ >- SET_TAC [] \\ + MATCH_MP_TAC SUBSET_TRANS >> Q.EXISTS_TAC ‘FV Q’ \\ + reverse CONJ_TAC >- art [] (* FV Q SUBSET Y *) \\ + qunabbrev_tac ‘Q0’ >> MATCH_MP_TAC principle_hnf_FV_SUBSET' >> art [] ] +QED + +(*---------------------------------------------------------------------------* + * subterm + *---------------------------------------------------------------------------*) + +(* Definition 10.1.13 (iii), ‘subterm’ is the main device connecting Boehm trees + to Boehm transformations (below). + + ‘subterm X M p’ returns (Y,N) where Y is X enriched with all binding variables + up to p, and N is the actual subterm. + + NOTE: Similarily with BT_generator, the setup of ‘X UNION FV M’ guarentees + the correctness of ‘subterm X M’ for whatever X provided, including {}. + + Also, in the recursive call of substerm, ‘X UNION set vs’ is used instead of + just ‘X’, because ‘vs’ may be free variables in some Ms. + *) +Definition subterm_def : + subterm X M [] = SOME (X,M :term) /\ + subterm X M (x::xs) = if solvable M then + let M0 = principle_hnf M; + n = LAMl_size M0; + vs = FRESH_list n (X UNION FV M); + M1 = principle_hnf (M0 @* (MAP VAR vs)); + Ms = hnf_children M1; + m = LENGTH Ms + in + if x < m then subterm (X UNION set vs) (EL x Ms) xs else NONE + else + NONE +End + +(* This assumes ‘subterm X M p <> NONE’ *) +Overload subterm' = “\X M p. SND (THE (subterm X M p))” + +(* |- !X M. subterm X M [] = SOME M *) +Theorem subterm_NIL[simp] = cj 1 subterm_def + +(* Lemma 10.1.15 [1, p.222] *) +Theorem BT_subterm_thm : + !p X M. p IN ltree_paths (BTe X M) /\ subterm X M p <> NONE ==> + BT (THE (subterm X M p)) = THE (ltree_lookup (BTe X M) p) +Proof + Induct_on ‘p’ + >- rw [subterm_def, ltree_lookup_def] + >> rw [subterm_def, ltree_lookup] + >> qabbrev_tac ‘M0 = principle_hnf M’ + >> qabbrev_tac ‘n = LAMl_size M0’ + >> qabbrev_tac ‘vs = FRESH_list n (X UNION FV M)’ + >> qabbrev_tac ‘M1 = principle_hnf (M0 @* (MAP VAR vs))’ + >> qabbrev_tac ‘Ms = hnf_children M1’ + >> Know ‘BTe X M = ltree_unfold BT_generator (X,M)’ >- rw [BT_def] + >> simp [Once ltree_unfold, BT_generator_def] + >> DISCH_TAC + >> simp [LNTH_fromList, EL_MAP] + >> Q.PAT_X_ASSUM ‘h::p IN ltree_paths (BTe X M)’ MP_TAC + >> POP_ORW + >> rw [ltree_paths_def, ltree_lookup_def, LNTH_fromList, GSYM BT_def, EL_MAP] +QED + +(* NOTE: In the above theorem, when the antecedents hold, i.e. + + p IN ltree_paths (BTe X M) /\ subterm X M p = NONE + + Then ‘subterm' X M (FRONT p)’ must be an unsolvable term. This result can be + even improved to an iff, as the present theorem shows. + *) +Theorem subterm_is_none_iff_parent_unsolvable : + !p X M. p IN ltree_paths (BTe X M) ==> + (subterm X M p = NONE <=> + p <> [] /\ unsolvable (subterm' X M (FRONT p))) +Proof + Induct_on ‘p’ >> rw [subterm_def] (* 2 subgoals, only one left *) + >> qabbrev_tac ‘M0 = principle_hnf M’ + >> qabbrev_tac ‘n = LAMl_size M0’ + >> qabbrev_tac ‘vs = FRESH_list n (X UNION FV M)’ + >> qabbrev_tac ‘M1 = principle_hnf (M0 @* (MAP VAR vs))’ + >> qabbrev_tac ‘Ms = hnf_children M1’ + >> reverse (Cases_on ‘solvable M’) + >- (rw [] >> Suff ‘p = []’ >- rw [subterm_NIL] \\ + Q.PAT_X_ASSUM ‘h::p IN ltree_paths (BTe X M)’ MP_TAC \\ + simp [BT_of_unsolvables, ltree_paths_def, ltree_lookup_def]) + >> simp [] + (* stage work, now M is solvable *) + >> Cases_on ‘p = []’ + >- (rw [subterm_NIL] \\ + Q.PAT_X_ASSUM ‘[h] IN ltree_paths (BTe X M)’ MP_TAC \\ + simp [BT_def, Once ltree_unfold, BT_generator_def, ltree_paths_def, + ltree_lookup_def, LNTH_fromList] \\ + Cases_on ‘h < LENGTH Ms’ >> simp []) + (* now: p <> [] *) + >> Know ‘h < LENGTH Ms’ + >- (Q.PAT_X_ASSUM ‘h::p IN ltree_paths (BTe X M)’ MP_TAC \\ + simp [BT_def, Once ltree_unfold, BT_generator_def, ltree_paths_def, + ltree_lookup_def, LNTH_fromList] \\ + Cases_on ‘h < LENGTH Ms’ >> simp []) + >> RW_TAC std_ss [FRONT_DEF] + (* stage work *) + >> qabbrev_tac ‘N = EL h Ms’ + >> Know ‘subterm X M (h::FRONT p) = subterm (X UNION set vs) N (FRONT p)’ + >- rw [subterm_def] + >> Rewr' + >> FULL_SIMP_TAC std_ss [] + >> FIRST_X_ASSUM MATCH_MP_TAC + (* p IN ltree_paths (BTe X N) *) + >> Q.PAT_X_ASSUM ‘h::p IN ltree_paths (BTe X M)’ MP_TAC + >> rw [BT_def, Once ltree_unfold, BT_generator_def, ltree_paths_def, + ltree_lookup_def, LNTH_fromList, EL_MAP] +QED + (*---------------------------------------------------------------------------* * Equivalent terms *---------------------------------------------------------------------------*) @@ -57,16 +460,20 @@ Definition equivalent_def : ~solvable M /\ ~solvable N End -Theorem equivalent_comm : - !M N. equivalent M N <=> equivalent N M +Theorem equivalent_symmetric : + symmetric equivalent Proof - RW_TAC std_ss [equivalent_def, Once MAX_COMM, Once UNION_COMM] - >- (rename1 ‘y2 = y3 /\ n1 + m3 = n3 + m2 <=> y = y1 /\ n + m1 = n1 + m’ \\ - ‘n3 = n’ by rw [Abbr ‘n3’, Abbr ‘n’] >> gs [] \\ - EQ_TAC >> rw []) - >> METIS_TAC [] + RW_TAC std_ss [symmetric_def, equivalent_def, Once MAX_COMM, Once UNION_COMM] + >> reverse (Cases_on ‘solvable x /\ solvable y’) >- fs [] + >> simp [] + >> rename1 ‘y1 = y2 /\ m1 + n = m + n1 <=> y3 = y4 /\ m3 + n1 = m2 + n3’ + >> ‘n3 = n’ by rw [Abbr ‘n3’, Abbr ‘n’] >> gs [] + >> EQ_TAC >> rw [] QED +(* |- !x y. equivalent x y <=> equivalent y x *) +Theorem equivalent_comm = REWRITE_RULE [symmetric_def] equivalent_symmetric + Theorem equivalent_of_solvables : !M N. solvable M /\ solvable N ==> (equivalent M N <=> @@ -115,29 +522,6 @@ Proof >> METIS_TAC [] QED -(* Given a hnf ‘M0’ and a shared binding variable list ‘vs’ - - hnf_tac adds the following abbreviation and new assumptions: - - Abbrev (M1 = principle_hnf (M0 @* MAP VAR (TAKE (LAMl_size M0) vs))) - M0 = LAMl (TAKE (LAMl_size M0) vs) (VAR y @* args) - M1 = VAR y @* args - - where the names "M1", "y" and "args" can be chosen from inputs. - *) -fun hnf_tac (M0,vs,M1,y,args) = let val n = “LAMl_size ^M0” in - qabbrev_tac ‘^M1 = principle_hnf (^M0 @* MAP VAR (TAKE ^n ^vs))’ - >> Know ‘?^y ^args. ^M0 = LAMl (TAKE ^n ^vs) (VAR ^y @* ^args)’ - >- (irule (iffLR hnf_cases_shared) >> rw []) - >> STRIP_TAC - >> Know ‘^M1 = VAR ^y @* ^args’ - >- (qunabbrev_tac ‘^M1’ \\ - Q.PAT_ASSUM ‘^M0 = LAMl (TAKE ^n ^vs) (VAR ^y @* ^args)’ - (fn th => REWRITE_TAC [Once th]) \\ - MATCH_MP_TAC principle_hnf_beta_reduce >> rw [hnf_appstar]) - >> DISCH_TAC -end; - (* The following combined tactic is useful after: RW_TAC std_ss [equivalent_of_solvables, principle_hnf_reduce] @@ -167,8 +551,8 @@ val equivalent_tac = >> Q.PAT_X_ASSUM ‘N0 = _’ ASSUME_TAC >> Q.PAT_X_ASSUM ‘M1 = _’ ASSUME_TAC >> Q.PAT_X_ASSUM ‘N1 = _’ ASSUME_TAC - >> ‘VAR y1 = y’ by rw [Abbr ‘y’ , hnf_head_absfree] - >> ‘VAR y2 = y'’ by rw [Abbr ‘y'’, hnf_head_absfree]; + >> ‘VAR y1 = y’ by rw [Abbr ‘y’ , absfree_hnf_head] + >> ‘VAR y2 = y'’ by rw [Abbr ‘y'’, absfree_hnf_head]; (* From [1, p.238]. This concerte example shows that dB encoding is not easy in defining this "concept": the literal encoding of inner head variables are not @@ -219,7 +603,7 @@ Proof >> METIS_TAC [] QED -Theorem equivalent_unsolvables : +Theorem equivalent_of_unsolvables : !M N. unsolvable M /\ unsolvable N ==> equivalent M N Proof rw [equivalent_def] @@ -229,7 +613,15 @@ QED * Boehm transformations *---------------------------------------------------------------------------*) -(* Definition 10.3.3 (i) *) +(* Definition 10.3.2 [1, p.246] *) +val _ = set_fixity "is_substitution_instance_of" (Infixr 490); + +(* NOTE: ‘(DOM phi) SUBSET (FV M)’ is not necessary *) +Definition is_substitution_instance_of : + N is_substitution_instance_of M <=> ?phi. N = M ISUB phi +End + +(* Definition 10.3.3 (i) [1, p.246] *) Type transform[pp] = “:(term -> term) list” (* Definition 10.3.3 (ii) *) @@ -560,7 +952,7 @@ Proof QED (* Lemma 10.3.6 (i) [1, p.247] *) -Theorem Boehm_transform_is_ready_exists : +Theorem Boehm_transform_exists_lemma1 : !M. ?pi. Boehm_transform pi /\ is_ready (apply pi M) Proof Q.X_GEN_TAC ‘M’ @@ -666,8 +1058,7 @@ Proof Know ‘(FEMPTY |++ L) ' (EL n (FRONT Z)) = EL n args'’ >- (FIRST_X_ASSUM MATCH_MP_TAC >> art []) >> Rewr' \\ Suff ‘z # EL n args’ - >- (DISCH_TAC \\ - CCONTR_TAC >> fs [] >> METIS_TAC [SUBSET_DEF]) \\ + >- (DISCH_TAC >> CCONTR_TAC >> fs [] >> METIS_TAC [SUBSET_DEF]) \\ CCONTR_TAC >> fs [] \\ Q.PAT_X_ASSUM ‘DISJOINT (set Z) X’ MP_TAC \\ rw [DISJOINT_ALT, Abbr ‘X’] \\ @@ -693,8 +1084,7 @@ Proof Know ‘DISJOINT (set Z) (BIGUNION (IMAGE FV (set args')))’ >- (MATCH_MP_TAC DISJOINT_SUBSET \\ Q.EXISTS_TAC ‘X’ >> rw [Abbr ‘X’]) \\ - rw [DISJOINT_ALT] \\ - FIRST_X_ASSUM irule >> art [] \\ + rw [DISJOINT_ALT] >> FIRST_X_ASSUM irule >> art [] \\ Q.EXISTS_TAC ‘EL n args'’ >> rw [MEM_EL] \\ Q.EXISTS_TAC ‘n’ >> art []) >> DISCH_TAC @@ -705,6 +1095,7 @@ Proof reverse CONJ_TAC >- (rw [Abbr ‘p1’, Abbr ‘xs’, MAP_MAP_o, GSYM MAP_REVERSE]) \\ MATCH_MP_TAC Boehm_transform_APPEND >> rw [Abbr ‘p2’, Abbr ‘p3’]) + (* applying is_ready_alt *) >> simp [is_ready_alt] >> DISJ2_TAC >> qexistsl_tac [‘a’, ‘args'’] @@ -723,7 +1114,7 @@ Proof CONJ_TAC >- art [] \\ qunabbrev_tac ‘M0’ \\ MATCH_MP_TAC lameq_SYM \\ - MATCH_MP_TAC lameq_principle_hnf' >> art []) + MATCH_MP_TAC lameq_principle_hnf_reduce' >> art []) >> ONCE_REWRITE_TAC [Boehm_apply_APPEND] >> MATCH_MP_TAC lameq_TRANS >> Q.EXISTS_TAC ‘apply (p3 ++ p2) M1’ @@ -887,8 +1278,7 @@ Proof Q.EXISTS_TAC ‘apply p3 (VAR a @* MAP VAR bs)’ \\ CONJ_TAC >- (MATCH_MP_TAC lameq_apply_cong >> art []) \\ rw [Abbr ‘p3’] \\ - MATCH_MP_TAC lameq_TRANS \\ - Q.EXISTS_TAC ‘f2 P’ \\ + MATCH_MP_TAC lameq_TRANS >> Q.EXISTS_TAC ‘f2 P’ \\ reverse CONJ_TAC >- rw [] \\ MATCH_MP_TAC solving_transform_lameq >> rw [Abbr ‘f2’], (* goal 2 (of 2) *) @@ -988,7 +1378,7 @@ Proof Q.EXISTS_TAC ‘apply (p1 ++ p0) N0’ \\ CONJ_TAC >- (MATCH_MP_TAC lameq_apply_cong >> POP_ASSUM (REWRITE_TAC o wrap) \\ qunabbrev_tac ‘N0’ >> MATCH_MP_TAC lameq_SYM \\ - MATCH_MP_TAC lameq_principle_hnf >> art [GSYM solvable_iff_has_hnf]) \\ + MATCH_MP_TAC lameq_principle_hnf_reduce >> art [GSYM solvable_iff_has_hnf]) \\ (* eliminating p0 *) REWRITE_TAC [Boehm_apply_APPEND] \\ MATCH_MP_TAC lameq_TRANS \\ @@ -1026,7 +1416,7 @@ Proof CONJ_TAC >- (MATCH_MP_TAC lameq_apply_cong >> POP_ASSUM (REWRITE_TAC o wrap) \\ qunabbrev_tac ‘M0’ \\ MATCH_MP_TAC lameq_SYM \\ - MATCH_MP_TAC lameq_principle_hnf >> art [GSYM solvable_iff_has_hnf]) \\ + MATCH_MP_TAC lameq_principle_hnf_reduce >> art [GSYM solvable_iff_has_hnf]) \\ (* eliminating p0 *) REWRITE_TAC [Boehm_apply_APPEND] \\ MATCH_MP_TAC lameq_TRANS \\ @@ -1115,7 +1505,7 @@ Proof Q.EXISTS_TAC ‘apply (pi ++ p0) M0’ \\ CONJ_TAC >- (MATCH_MP_TAC lameq_apply_cong >> POP_ASSUM (REWRITE_TAC o wrap) \\ qunabbrev_tac ‘M0’ >> MATCH_MP_TAC lameq_SYM \\ - MATCH_MP_TAC lameq_principle_hnf \\ + MATCH_MP_TAC lameq_principle_hnf_reduce \\ ASM_REWRITE_TAC [GSYM solvable_iff_has_hnf]) \\ REWRITE_TAC [Boehm_apply_APPEND] \\ MATCH_MP_TAC lameq_TRANS \\ @@ -1128,7 +1518,7 @@ Proof Q.EXISTS_TAC ‘apply (pi ++ p0) N0’ \\ CONJ_TAC >- (MATCH_MP_TAC lameq_apply_cong >> POP_ASSUM (REWRITE_TAC o wrap) \\ qunabbrev_tac ‘N0’ >> MATCH_MP_TAC lameq_SYM \\ - MATCH_MP_TAC lameq_principle_hnf \\ + MATCH_MP_TAC lameq_principle_hnf_reduce \\ ASM_REWRITE_TAC [GSYM solvable_iff_has_hnf]) \\ REWRITE_TAC [Boehm_apply_APPEND] \\ MATCH_MP_TAC lameq_TRANS \\ diff --git a/examples/lambda/barendregt/chap3Script.sml b/examples/lambda/barendregt/chap3Script.sml index 759cfa7169..5d295c27cc 100644 --- a/examples/lambda/barendregt/chap3Script.sml +++ b/examples/lambda/barendregt/chap3Script.sml @@ -186,6 +186,16 @@ val ccbeta_rwt = store_thm( FULL_SIMP_TAC (srw_ss()) [] ]); +Theorem ccbeta_LAMl_rwt : + !vs M N. LAMl vs M -b-> N <=> ?M'. N = LAMl vs M' /\ M -b-> M' +Proof + Induct_on ‘vs’ + >> rw [ccbeta_rwt] (* only one goal left *) + >> EQ_TAC >> rw [] + >- (Q.EXISTS_TAC ‘M'’ >> art []) + >> Q.EXISTS_TAC ‘LAMl vs M'’ >> rw [] +QED + val beta_normal_form_bnf = store_thm( "beta_normal_form_bnf", ``normal_form beta = bnf``, @@ -689,6 +699,7 @@ val ccbeta_lameq = store_thm( "ccbeta_lameq", ``!M N. M -b-> N ==> M == N``, SRW_TAC [][lameq_betaconversion, EQC_R]); + val betastar_lameq = store_thm( "betastar_lameq", ``!M N. M -b->* N ==> M == N``, @@ -1578,6 +1589,11 @@ val betastar_eq_cong = store_thm( ``bnf N ==> M -b->* M' ==> (M -b->* N <=> M' -b->* N)``, METIS_TAC [bnf_triangle, RTC_CASES_RTC_TWICE]); +(* |- !x y z. x -b->* y /\ y -b->* z ==> x -b->* z *) +Theorem betastar_TRANS = + RTC_TRANSITIVE |> Q.ISPEC ‘compat_closure beta’ + |> REWRITE_RULE [transitive_def] + val _ = export_theory(); val _ = html_theory "chap3"; diff --git a/examples/lambda/barendregt/head_reductionScript.sml b/examples/lambda/barendregt/head_reductionScript.sml index a1f372ca80..12e4b4ab33 100644 --- a/examples/lambda/barendregt/head_reductionScript.sml +++ b/examples/lambda/barendregt/head_reductionScript.sml @@ -39,6 +39,9 @@ val hreduce1_FV = store_thm( ``∀M N. M -h-> N ⇒ ∀v. v ∈ FV N ⇒ v ∈ FV M``, METIS_TAC [SUBSET_DEF, hreduce_ccbeta, cc_beta_FV_SUBSET]); +(* |- !M N. M -h-> N ==> FV N SUBSET FV M *) +Theorem hreduce1_FV_SUBSET = hreduce1_FV |> REWRITE_RULE [GSYM SUBSET_DEF] + Theorem hreduces_FV : ∀M N. M -h->* N ⇒ v ∈ FV N ⇒ v ∈ FV M Proof @@ -985,12 +988,60 @@ Proof (tail (pcons x r q) = tail (drop i p))’ >- art [] >> simp [] >> DISCH_THEN (fs o wrap) - >> ‘nth_label i p = g i’ by (rw [Abbr ‘p’, nth_label_pgenerate]) - >> ‘!i. el i p = f i’ by (rw [Abbr ‘p’, el_pgenerate]) + >> ‘nth_label i p = g i’ by rw [Abbr ‘p’, nth_label_pgenerate] + >> ‘!i. el i p = f i’ by rw [Abbr ‘p’, el_pgenerate] >> ASM_REWRITE_TAC [GSYM ADD1] >> Q.EXISTS_TAC ‘SUC i’ >> REWRITE_TAC [] QED +(* This theorem guarentees the one-one mapping between the list and the path *) +Theorem finite_head_reduction_path_to_list_11 : + !M p. (p = head_reduction_path M) /\ finite p ==> + ?l. l <> [] /\ (HD l = M) /\ hnf (LAST l) /\ + (LENGTH l = THE (length p)) /\ + (!i. i < LENGTH l ==> (EL i l = el i (head_reduction_path M))) /\ + !i. SUC i < LENGTH l ==> EL i l -h-> EL (SUC i) l +Proof + RW_TAC std_ss [] + >> qabbrev_tac ‘p = head_reduction_path M’ + >> ‘?n. length p = SOME n’ by METIS_TAC [finite_length] + >> Cases_on ‘n’ >- fs [length_never_zero] + >> rename1 ‘length p = SOME (SUC n)’ + >> Q.EXISTS_TAC ‘GENLIST (\i. el i p) (SUC n)’ >> simp [] + >> STRONG_CONJ_TAC >- rw [NOT_NIL_EQ_LENGTH_NOT_0] >> DISCH_TAC + >> CONJ_TAC >- rw [GSYM EL, Abbr ‘p’, head_reduction_path_def] + >> CONJ_TAC (* hnf *) + >- (qabbrev_tac ‘l = GENLIST (\i. el i p) (SUC n)’ \\ + rw [Abbr ‘l’, LAST_EL] \\ + Suff ‘el n p = last p’ >- rw [Abbr ‘p’, head_reduction_path_def] \\ + rw [finite_last_el]) + >> rw [head_reduce1_def] + >> ‘i IN PL p /\ i + 1 IN PL p’ by rw [PL_def] + >> qabbrev_tac ‘q = drop i p’ + >> ‘el i p = first q’ by rw [Abbr ‘q’] >> POP_ORW + >> Know ‘el i (tail p) = first (tail q)’ + >- (rw [Abbr ‘q’, REWRITE_RULE [ADD1] el_def]) + >> Rewr' + >> Know ‘is_head_reduction q’ + >- (qunabbrev_tac ‘q’ \\ + irule finite_is_head_reduction_drop \\ + rw [Abbr ‘p’, head_reduction_path_def]) + >> DISCH_TAC + (* perform case analysis *) + >> ‘(?x. q = stopped_at x) \/ ?x r xs. q = pcons x r xs’ by METIS_TAC [path_cases] + >- (Know ‘PL q = IMAGE (\n. n - i) (PL p)’ + >- rw [Abbr ‘q’, PL_drop] \\ + ‘PL p = count (SUC n)’ by rw [PL_def, count_def] >> POP_ORW \\ + POP_ORW (* q = stopped_at x *) \\ + simp [PL_stopped_at] \\ + Suff ‘IMAGE (\n. n - i) (count (SUC n)) <> {0}’ >- METIS_TAC [] \\ + rw [Once EXTENSION] \\ + Q.EXISTS_TAC ‘n - i’ >> rw [] \\ + Q.EXISTS_TAC ‘n’ >> rw []) + >> fs [is_head_reduction_thm] + >> Q.EXISTS_TAC ‘r’ >> art [] +QED + Theorem finite_head_reduction_path_to_list : !M. finite (head_reduction_path M) <=> ?l. l <> [] /\ (HD l = M) /\ hnf (LAST l) /\ @@ -999,40 +1050,8 @@ Proof Q.X_GEN_TAC ‘M’ >> qabbrev_tac ‘p = head_reduction_path M’ >> EQ_TAC >> rpt STRIP_TAC - >- (‘?n. length p = SOME n’ by METIS_TAC [finite_length] \\ - Cases_on ‘n’ >- fs [length_never_zero] \\ - rename1 ‘length p = SOME (SUC n)’ \\ - Q.EXISTS_TAC ‘GENLIST (\i. el i p) (SUC n)’ >> simp [] \\ - STRONG_CONJ_TAC >- rw [NOT_NIL_EQ_LENGTH_NOT_0] >> DISCH_TAC \\ - CONJ_TAC >- rw [GSYM EL, Abbr ‘p’, head_reduction_path_def] \\ - CONJ_TAC (* hnf *) - >- (qabbrev_tac ‘l = GENLIST (\i. el i p) (SUC n)’ \\ - rw [Abbr ‘l’, LAST_EL] \\ - Suff ‘el n p = last p’ >- rw [Abbr ‘p’, head_reduction_path_def] \\ - rw [finite_last_el]) \\ - rw [head_reduce1_def] \\ - ‘i IN PL p /\ i + 1 IN PL p’ by rw [PL_def] \\ - qabbrev_tac ‘q = drop i p’ \\ - ‘el i p = first q’ by rw [Abbr ‘q’] >> POP_ORW \\ - Know ‘el i (tail p) = first (tail q)’ - >- (rw [Abbr ‘q’, REWRITE_RULE [ADD1] el_def]) >> Rewr' \\ - Know ‘is_head_reduction q’ - >- (qunabbrev_tac ‘q’ \\ - irule finite_is_head_reduction_drop \\ - rw [Abbr ‘p’, head_reduction_path_def]) >> DISCH_TAC \\ - (* perform case analysis *) - ‘(?x. q = stopped_at x) \/ ?x r xs. q = pcons x r xs’ by METIS_TAC [path_cases] - >- (Know ‘PL q = IMAGE (\n. n - i) (PL p)’ - >- rw [Abbr ‘q’, PL_drop] \\ - ‘PL p = count (SUC n)’ by rw [PL_def, count_def] >> POP_ORW \\ - POP_ORW (* q = stopped_at x *) \\ - simp [PL_stopped_at] \\ - Suff ‘IMAGE (\n. n - i) (count (SUC n)) <> {0}’ >- METIS_TAC [] \\ - rw [Once EXTENSION] \\ - Q.EXISTS_TAC ‘n - i’ >> rw [] \\ - Q.EXISTS_TAC ‘n’ >> art []) \\ - fs [is_head_reduction_thm] \\ - Q.EXISTS_TAC ‘r’ >> art []) + >- (MP_TAC (Q.SPECL [‘M’, ‘p’] finite_head_reduction_path_to_list_11) \\ + rw [] >> Q.EXISTS_TAC ‘l’ >> rw []) (* stage work *) >> qabbrev_tac ‘len = LENGTH l’ >> ‘0 < len /\ len <> 0’ by rw [Abbr ‘len’, GSYM NOT_NIL_EQ_LENGTH_NOT_0] @@ -1200,7 +1219,7 @@ QED Overload hnf_headvar = “\t. THE_VAR (hnf_head t)” -(* hnf_children retrives the ‘args’ part of an abs-free hnf (VAR y @* args) *) +(* hnf_children retrives the ‘args’ part of absfree hnf *) Definition hnf_children_def : hnf_children t = if is_comb t then SNOC (rand t) (hnf_children (rator t)) @@ -1255,7 +1274,25 @@ Proof >> rw [hnf_children_appstar, hnf_head_appstar] QED -Theorem hnf_head_absfree : +Theorem hnf_children_FV_SUBSET : + !M Ms. hnf M /\ ~is_abs M /\ (Ms = hnf_children M) ==> + !i. i < LENGTH Ms ==> FV (EL i Ms) SUBSET FV M +Proof + rpt STRIP_TAC + >> ‘M = hnf_head M @* hnf_children M’ by PROVE_TAC [absfree_hnf_thm] + >> POP_ORW + >> Q.PAT_X_ASSUM ‘Ms = hnf_children M’ (fs o wrap) + >> qabbrev_tac ‘Ms = hnf_children M’ + >> simp [FV_appstar] + >> MATCH_MP_TAC SUBSET_TRANS + >> Q.EXISTS_TAC ‘BIGUNION (IMAGE FV (set Ms))’ + >> simp [] + >> rw [SUBSET_DEF, IN_BIGUNION_IMAGE] + >> Q.EXISTS_TAC ‘EL i Ms’ >> rw [MEM_EL] + >> Q.EXISTS_TAC ‘i’ >> rw [] +QED + +Theorem absfree_hnf_head : !y args. hnf_head (VAR y @* args) = VAR y Proof rpt GEN_TAC diff --git a/examples/lambda/barendregt/solvableScript.sml b/examples/lambda/barendregt/solvableScript.sml index 272e37cbc8..86657898f8 100644 --- a/examples/lambda/barendregt/solvableScript.sml +++ b/examples/lambda/barendregt/solvableScript.sml @@ -1,16 +1,16 @@ (*---------------------------------------------------------------------------* - * solvableScript.sml (or chap8_3): Theory of Solvable Lambda Terms * + * solvableScript.sml (or chap8_3): solvable terms (and principle hnfs) * *---------------------------------------------------------------------------*) open HolKernel Parse boolLib bossLib; (* core theories *) open arithmeticTheory pred_setTheory listTheory rich_listTheory sortingTheory - finite_mapTheory pathTheory hurdUtils; + finite_mapTheory pathTheory relationTheory hurdUtils; (* lambda theories *) open binderLib nomsetTheory termTheory appFOLDLTheory chap2Theory chap3Theory - reductionEval standardisationTheory head_reductionTheory; + reductionEval standardisationTheory head_reductionTheory horeductionTheory; val _ = new_theory "solvable"; @@ -626,17 +626,61 @@ Proof >> MATCH_MP_TAC lameq_appstar_cong >> rw [lameq_K] QED +(*---------------------------------------------------------------------------* + * Principle Head Normal Forms (principle_hnf) + *---------------------------------------------------------------------------*) + (* Definition 8.3.20 [1, p.177] - A term may have several hnf's, e.g. if any of its hnf can still do beta - reductions, after such reductions the term is still an hnf by definition. - The (unique) terminating term of head reduction path is called "principle" - hnf, which is used for defining Boehm trees. + A term may have many different hnf's. For example, if any hnf can still do + beta reductions, after reductions the hnf is still an hnf of the original term. + + For solvable terms, there is a unique terminating hnf as the last element of + head reduction path, which is called "principle" hnf. *) Definition principle_hnf_def : principle_hnf = last o head_reduction_path End +(* principle hnf has less (or equal) free variables + + NOTE: this theorem depends on finite_head_reduction_path_to_list_11 and + hreduce1_FV. + *) +Theorem principle_hnf_FV_SUBSET : + !M. has_hnf M ==> FV (principle_hnf M) SUBSET FV M +Proof + rw [corollary11_4_8] + >> qabbrev_tac ‘p = head_reduction_path M’ + >> MP_TAC (Q.SPECL [‘M’, ‘p’] finite_head_reduction_path_to_list_11) + >> rw [principle_hnf_def, combinTheory.o_DEF] + >> simp [finite_last_el] + >> Q.PAT_X_ASSUM ‘LENGTH l = _’ (ONCE_REWRITE_TAC o wrap o SYM) + >> qabbrev_tac ‘n = PRE (LENGTH l)’ + >> ‘LENGTH l <> 0’ by rw [GSYM NOT_NIL_EQ_LENGTH_NOT_0] + >> Know ‘el n p = EL n l’ + >- (ONCE_REWRITE_TAC [EQ_SYM_EQ] \\ + FIRST_X_ASSUM MATCH_MP_TAC >> rw [Abbr ‘n’]) + >> Rewr' + >> REWRITE_TAC [GSYM EL] + (* preparing for induction *) + >> Suff ‘!j. j < LENGTH l ==> FV (EL j l) SUBSET FV (EL 0 l)’ + >- (DISCH_THEN MATCH_MP_TAC >> rw [Abbr ‘n’]) + >> Q.PAT_X_ASSUM ‘!i. i < LENGTH l ==> EL i l = el i p’ K_TAC + >> Induct_on ‘j’ + >> RW_TAC std_ss [SUBSET_REFL] (* only one goal is left *) + >> MATCH_MP_TAC SUBSET_TRANS + >> Q.EXISTS_TAC ‘FV (EL j l)’ + >> reverse CONJ_TAC + >- (FIRST_X_ASSUM MATCH_MP_TAC >> rw []) + >> MATCH_MP_TAC hreduce1_FV_SUBSET + >> FIRST_X_ASSUM MATCH_MP_TAC >> art [] +QED + +(* |- !M. solvable M ==> FV (principle_hnf M) SUBSET FV M *) +Theorem principle_hnf_FV_SUBSET' = + principle_hnf_FV_SUBSET |> REWRITE_RULE [GSYM solvable_iff_has_hnf] + Theorem hnf_principle_hnf : !M. has_hnf M ==> hnf (principle_hnf M) Proof @@ -920,7 +964,7 @@ Proof >> MATCH_MP_TAC lameq_solvable_cong_lemma >> art [] QED -Theorem lameq_principle_hnf : +Theorem lameq_principle_hnf_reduce : !M. has_hnf M ==> principle_hnf M == M Proof rpt STRIP_TAC @@ -936,8 +980,263 @@ Proof QED (* |- !M. solvable M ==> principle_hnf M == M *) -Theorem lameq_principle_hnf' = - REWRITE_RULE [GSYM solvable_iff_has_hnf] lameq_principle_hnf +Theorem lameq_principle_hnf_reduce' = + lameq_principle_hnf_reduce |> REWRITE_RULE [GSYM solvable_iff_has_hnf] + +Theorem hnf_ccbeta_appstar_rwt[local] : + !y Ms N. VAR y @* Ms -b-> N /\ Ms <> [] ==> + ?Ns. N = VAR y @* Ns /\ LENGTH Ns = LENGTH Ms /\ + !i. i < LENGTH Ms ==> EL i Ms -b->* EL i Ns +Proof + Q.X_GEN_TAC ‘y’ + >> Induct_on ‘Ms’ using SNOC_INDUCT >> rw [] + >> fs [ccbeta_rwt] (* 2 subgoals *) + >- (Cases_on ‘Ms = []’ >> fs [ccbeta_rwt] \\ + Q.PAT_X_ASSUM ‘!N. P’ (MP_TAC o (Q.SPEC ‘M'’)) \\ + RW_TAC std_ss [] \\ + Q.EXISTS_TAC ‘SNOC x Ns’ >> rw [] \\ + ‘i = LENGTH Ms \/ i < LENGTH Ms’ by rw [] + >- (rw [EL_LENGTH_SNOC] \\ + Q.PAT_X_ASSUM ‘LENGTH Ns = LENGTH Ms’ (REWRITE_TAC o wrap o SYM) \\ + rw [EL_LENGTH_SNOC]) \\ + rw [EL_SNOC]) + (* stage work *) + >> Cases_on ‘Ms = []’ >> fs [] + >- (Q.EXISTS_TAC ‘[N']’ >> rw []) + >> Q.EXISTS_TAC ‘SNOC N' Ms’ + >> rw [appstar_SNOC] + >> ‘i = LENGTH Ms \/ i < LENGTH Ms’ by rw [] + >- (rw [EL_LENGTH_SNOC]) + >> rw [EL_SNOC] +QED + +Theorem hnf_ccbeta_cases[local] : + !Ms. LAMl vs (VAR y @* Ms) -b-> N ==> + ?Ns. N = LAMl vs (VAR y @* Ns) /\ + LENGTH Ns = LENGTH Ms /\ + !i. i < LENGTH Ms ==> EL i Ms -b->* EL i Ns +Proof + rw [ccbeta_LAMl_rwt] + >> Suff ‘?Ns. M' = VAR y @* Ns /\ LENGTH Ns = LENGTH Ms /\ + !i. i < LENGTH Ms ==> EL i Ms -b->* EL i Ns’ + >- (STRIP_TAC >> Q.EXISTS_TAC ‘Ns’ >> rw []) + >> MATCH_MP_TAC hnf_ccbeta_appstar_rwt + >> Cases_on ‘Ms = []’ >> fs [ccbeta_rwt] +QED + +(* Lemma 8.3.16 [1, p.176] *) +Theorem hnf_betastar_cases : + !vs y Ms N. LAMl vs (VAR y @* Ms) -b->* N ==> + ?Ns. N = LAMl vs (VAR y @* Ns) /\ + LENGTH Ns = LENGTH Ms /\ + !i. i < LENGTH Ms ==> EL i Ms -b->* EL i Ns +Proof + NTAC 2 GEN_TAC + >> Suff ‘!M N. M -b->* N ==> + !Ms. M = LAMl vs (VAR y @* Ms) ==> + ?Ns. N = LAMl vs (VAR y @* Ns) /\ + LENGTH Ns = LENGTH Ms /\ + !i. i < LENGTH Ms ==> EL i Ms -b->* EL i Ns’ + >- METIS_TAC [] + >> HO_MATCH_MP_TAC RTC_INDUCT >> rw [] + >> Know ‘?Ns. M' = LAMl vs (VAR y @* Ns) /\ + LENGTH Ns = LENGTH Ms /\ + !i. i < LENGTH Ms ==> EL i Ms -b->* EL i Ns’ + >- (irule hnf_ccbeta_cases >> art []) + >> STRIP_TAC + >> Q.PAT_X_ASSUM ‘!Ms. M' = LAMl vs (VAR y @* Ms) ==> P’ + (MP_TAC o (Q.SPEC ‘Ns’)) + >> RW_TAC std_ss [] (* this asserts Ns' *) + >> Q.EXISTS_TAC ‘Ns'’ >> rw [] + >> MATCH_MP_TAC betastar_TRANS + >> Q.EXISTS_TAC ‘EL i Ns’ >> rw [] +QED + +(* Corollary 8.3.17 (ii) [1, p.176] (inner part) *) +Theorem lameq_principle_hnf_lemma : + !X M N. FINITE X /\ FV M SUBSET X /\ FV N SUBSET X /\ + hnf M /\ hnf N /\ M == N + ==> LAMl_size M = LAMl_size N /\ + let n = LAMl_size M; + vs = FRESH_list n X; + M1 = principle_hnf (M @* MAP VAR vs); + N1 = principle_hnf (N @* MAP VAR vs) + in + hnf_headvar M1 = hnf_headvar N1 /\ + LENGTH (hnf_children M1) = LENGTH (hnf_children N1) /\ + !i. i < LENGTH (hnf_children M1) ==> + EL i (hnf_children M1) == EL i (hnf_children N1) +Proof + rpt GEN_TAC >> STRIP_TAC + (* at the beginning, we don't know if n = n' *) + >> qabbrev_tac ‘n = LAMl_size M’ + >> qabbrev_tac ‘n' = LAMl_size N’ + (* applying hnf_cases_shared *) + >> qabbrev_tac ‘vs = FRESH_list (MAX n n') X’ + >> ‘ALL_DISTINCT vs /\ DISJOINT (set vs) X /\ LENGTH vs = MAX n n'’ + by rw [FRESH_list_def, Abbr ‘vs’] + >> Know ‘?y args. M = LAMl (TAKE n vs) (VAR y @* args)’ + >- (qunabbrev_tac ‘n’ >> irule (iffLR hnf_cases_shared) >> rw [] \\ + MATCH_MP_TAC DISJOINT_SUBSET \\ + Q.EXISTS_TAC ‘X’ >> fs []) + >> STRIP_TAC + >> Know ‘?y' args'. N = LAMl (TAKE n' vs) (VAR y' @* args')’ + >- (qunabbrev_tac ‘n'’ >> irule (iffLR hnf_cases_shared) >> rw [] \\ + MATCH_MP_TAC DISJOINT_SUBSET \\ + Q.EXISTS_TAC ‘X’ >> fs []) + >> STRIP_TAC + >> qabbrev_tac ‘vs1 = TAKE n vs’ + >> qabbrev_tac ‘vs2 = TAKE n' vs’ + >> ‘n = LENGTH vs1 /\ n' = LENGTH vs2’ by rw [Abbr ‘n’, Abbr ‘n'’] + (* applying lameq_CR *) + >> ‘?Z. M -b->* Z /\ N -b->* Z’ by METIS_TAC [lameq_CR] + (* applying hnf_betastar_cases *) + >> ‘?Ns. Z = LAMl vs1 (VAR y @* Ns) /\ LENGTH Ns = LENGTH args /\ + !i. i < LENGTH args ==> EL i args -b->* EL i Ns’ + by METIS_TAC [hnf_betastar_cases] + >> ‘?Ns'. Z = LAMl vs2 (VAR y' @* Ns') /\ LENGTH Ns' = LENGTH args' /\ + !i. i < LENGTH args' ==> EL i args' -b->* EL i Ns'’ + by METIS_TAC [hnf_betastar_cases] + (* eliminate n' once we know n = n' *) + >> STRONG_CONJ_TAC >- METIS_TAC [LAMl_size_hnf] + >> DISCH_THEN (REV_FULL_SIMP_TAC std_ss o wrap o SYM) + >> qunabbrevl_tac [‘vs1’, ‘vs2’] + >> ‘TAKE n vs = vs’ by METIS_TAC [TAKE_LENGTH_ID] + >> POP_ASSUM (REV_FULL_SIMP_TAC std_ss o wrap) + (* eliminiate LETs in the goal *) + >> simp [] + (* applying principle_hnf_beta_reduce *) + >> Know ‘principle_hnf (LAMl vs (VAR y @* args) @* MAP VAR vs) = VAR y @* args’ + >- (MATCH_MP_TAC principle_hnf_beta_reduce >> rw [hnf_appstar]) + >> Rewr' + >> Know ‘principle_hnf (LAMl vs (VAR y' @* args') @* MAP VAR vs) = VAR y' @* args'’ + >- (MATCH_MP_TAC principle_hnf_beta_reduce >> rw [hnf_appstar]) + >> Rewr' + >> simp [hnf_head_hnf, hnf_children_hnf] + >> Q.PAT_X_ASSUM ‘M = LAMl vs _’ K_TAC + >> Q.PAT_X_ASSUM ‘N = LAMl vs _’ K_TAC + >> gs [LAMl_eq_rewrite] + >> Q.PAT_X_ASSUM ‘y = y'’ (fs o wrap o SYM) + >> Q.PAT_X_ASSUM ‘Ns = Ns'’ (fs o wrap o SYM) + >> NTAC 2 (Q.PAT_X_ASSUM ‘_ = LENGTH args’ K_TAC) + >> Q.PAT_X_ASSUM ‘Z = _’ K_TAC + >> rpt STRIP_TAC + (* applying lameq_TRANS and betastar_lameq *) + >> MATCH_MP_TAC lameq_TRANS + >> Q.EXISTS_TAC ‘EL i Ns’ + >> CONJ_TAC >- (MATCH_MP_TAC betastar_lameq >> rw []) + >> MATCH_MP_TAC lameq_SYM + >> MATCH_MP_TAC betastar_lameq >> rw [] +QED + +Theorem lameq_principle_hnf_size_eq : + !M N. has_hnf M /\ has_hnf N /\ M == N ==> + LAMl_size (principle_hnf M) = LAMl_size (principle_hnf N) +Proof + rpt STRIP_TAC + >> qabbrev_tac ‘M0 = principle_hnf M’ + >> qabbrev_tac ‘N0 = principle_hnf N’ + >> Know ‘M0 == N0’ + >- (MATCH_MP_TAC lameq_TRANS >> Q.EXISTS_TAC ‘M’ \\ + CONJ_TAC >- (qunabbrev_tac ‘M0’ \\ + MATCH_MP_TAC lameq_principle_hnf_reduce >> art []) \\ + MATCH_MP_TAC lameq_TRANS >> Q.EXISTS_TAC ‘N’ >> art [] \\ + MATCH_MP_TAC lameq_SYM \\ + qunabbrev_tac ‘N0’ \\ + MATCH_MP_TAC lameq_principle_hnf_reduce >> art []) + >> DISCH_TAC + >> ‘hnf M0 /\ hnf N0’ by METIS_TAC [hnf_principle_hnf] + >> qabbrev_tac ‘X = FV M0 UNION FV N0’ + >> MP_TAC (Q.SPECL [‘X’, ‘M0’, ‘N0’] lameq_principle_hnf_lemma) + >> rw [Abbr ‘X’] +QED + +(* |- !M N. + solvable M /\ solvable N /\ M == N ==> + LAMl_size (principle_hnf M) = LAMl_size (principle_hnf N) + *) +Theorem lameq_principle_hnf_size_eq' = + lameq_principle_hnf_size_eq |> REWRITE_RULE [GSYM solvable_iff_has_hnf] + +Theorem lameq_principle_hnf_headvar_eq : + !X M N M0 N0 n vs M1 N1. + FINITE X /\ FV M UNION FV N SUBSET X /\ + has_hnf M /\ has_hnf N /\ M == N /\ + M0 = principle_hnf M /\ N0 = principle_hnf N /\ + n = LAMl_size M0 /\ vs = FRESH_list n X /\ + M1 = principle_hnf (M0 @* MAP VAR vs) /\ + N1 = principle_hnf (N0 @* MAP VAR vs) + ==> hnf_headvar M1 = hnf_headvar N1 +Proof + RW_TAC std_ss [UNION_SUBSET] + >> qabbrev_tac ‘M0 = principle_hnf M’ + >> qabbrev_tac ‘N0 = principle_hnf N’ + >> qabbrev_tac ‘n = LAMl_size M0’ + >> qabbrev_tac ‘vs = FRESH_list n X’ + >> qabbrev_tac ‘M1 = principle_hnf (M0 @* MAP VAR vs)’ + >> qabbrev_tac ‘N1 = principle_hnf (N0 @* MAP VAR vs)’ + >> Know ‘M0 == N0’ + >- (MATCH_MP_TAC lameq_TRANS >> Q.EXISTS_TAC ‘M’ \\ + CONJ_TAC >- (qunabbrev_tac ‘M0’ \\ + MATCH_MP_TAC lameq_principle_hnf_reduce >> art []) \\ + MATCH_MP_TAC lameq_TRANS >> Q.EXISTS_TAC ‘N’ >> art [] \\ + MATCH_MP_TAC lameq_SYM \\ + qunabbrev_tac ‘N0’ \\ + MATCH_MP_TAC lameq_principle_hnf_reduce >> art []) + >> DISCH_TAC + >> ‘hnf M0 /\ hnf N0’ by METIS_TAC [hnf_principle_hnf] + (* applying lameq_principle_hnf_lemma *) + >> MP_TAC (Q.SPECL [‘X’, ‘M0’, ‘N0’] lameq_principle_hnf_lemma) + >> Suff ‘FV M0 SUBSET X /\ FV N0 SUBSET X’ >- rw [] + (* applying principle_hnf_FV_SUBSET *) + >> METIS_TAC [principle_hnf_FV_SUBSET, SUBSET_TRANS] +QED + +Theorem lameq_principle_hnf_headvar_eq' = + lameq_principle_hnf_headvar_eq |> REWRITE_RULE [GSYM solvable_iff_has_hnf] + +(* Corollary 8.3.17 (ii) [1, p.176] (outer part) *) +Theorem lameq_principle_hnf_thm : + !X M N M0 N0 n vs M1 N1. + FINITE X /\ FV M UNION FV N SUBSET X /\ + has_hnf M /\ has_hnf N /\ M == N /\ + M0 = principle_hnf M /\ N0 = principle_hnf N /\ + n = LAMl_size M0 /\ vs = FRESH_list n X /\ + M1 = principle_hnf (M0 @* MAP VAR vs) /\ + N1 = principle_hnf (N0 @* MAP VAR vs) + ==> LAMl_size M0 = LAMl_size N0 /\ + hnf_headvar M1 = hnf_headvar N1 /\ + LENGTH (hnf_children M1) = LENGTH (hnf_children N1) /\ + !i. i < LENGTH (hnf_children M1) ==> + EL i (hnf_children M1) == EL i (hnf_children N1) +Proof + rpt GEN_TAC >> STRIP_TAC + >> NTAC 6 POP_ORW + >> qabbrev_tac ‘M0 = principle_hnf M’ + >> qabbrev_tac ‘N0 = principle_hnf N’ + >> qabbrev_tac ‘n = LAMl_size M0’ + >> qabbrev_tac ‘vs = FRESH_list n X’ + >> qabbrev_tac ‘M1 = principle_hnf (M0 @* MAP VAR vs)’ + >> qabbrev_tac ‘N1 = principle_hnf (N0 @* MAP VAR vs)’ + >> Know ‘M0 == N0’ + >- (MATCH_MP_TAC lameq_TRANS >> Q.EXISTS_TAC ‘M’ \\ + CONJ_TAC >- (qunabbrev_tac ‘M0’ \\ + MATCH_MP_TAC lameq_principle_hnf_reduce >> art []) \\ + MATCH_MP_TAC lameq_TRANS >> Q.EXISTS_TAC ‘N’ >> art [] \\ + MATCH_MP_TAC lameq_SYM \\ + qunabbrev_tac ‘N0’ \\ + MATCH_MP_TAC lameq_principle_hnf_reduce >> art []) + >> DISCH_TAC + >> ‘hnf M0 /\ hnf N0’ by METIS_TAC [hnf_principle_hnf] + (* applying lameq_principle_hnf_lemma *) + >> MP_TAC (Q.SPECL [‘X’, ‘M0’, ‘N0’] lameq_principle_hnf_lemma) + >> Suff ‘FV M0 SUBSET X /\ FV N0 SUBSET X’ >- rw [] + (* applying principle_hnf_FV_SUBSET *) + >> METIS_TAC [principle_hnf_FV_SUBSET, SUBSET_TRANS, UNION_SUBSET] +QED + +Theorem lameq_principle_hnf_thm' = + lameq_principle_hnf_thm |> REWRITE_RULE [GSYM solvable_iff_has_hnf] val _ = export_theory (); val _ = html_theory "solvable"; diff --git a/examples/lambda/basics/appFOLDLScript.sml b/examples/lambda/basics/appFOLDLScript.sml index 75cf17543a..a039ceee98 100644 --- a/examples/lambda/basics/appFOLDLScript.sml +++ b/examples/lambda/basics/appFOLDLScript.sml @@ -332,6 +332,12 @@ Proof rw [FOLDR_SNOC] QED +Theorem LAMl_eq_rewrite[simp] : + LAMl vs t1 = LAMl vs t2 <=> t1 = t2 +Proof + Induct_on ‘vs’ >> rw [LAM_eq_thm] +QED + (*---------------------------------------------------------------------------* * funpow for lambda terms (using arithmeticTheory.FUNPOW) *---------------------------------------------------------------------------*) diff --git a/src/coalgebras/ltreeScript.sml b/src/coalgebras/ltreeScript.sml index f70d709627..74f9c52c9b 100644 --- a/src/coalgebras/ltreeScript.sml +++ b/src/coalgebras/ltreeScript.sml @@ -8,9 +8,10 @@ Note that this tree data structure allows for both infinite depth and infinite breadth. *) -open HolKernel Parse boolLib bossLib term_tactic; +open HolKernel Parse boolLib bossLib; + open arithmeticTheory listTheory llistTheory alistTheory optionTheory; -open mp_then pred_setTheory relationTheory pairTheory combinTheory; +open pred_setTheory relationTheory pairTheory combinTheory hurdUtils; val _ = new_theory "ltree"; @@ -700,50 +701,65 @@ Proof >> EQ_TAC >> rw [] QED -Definition ltree_finite_branching_def : - ltree_finite_branching = ltree_every (\a ts. LFINITE ts) +Definition finite_branching_def : + finite_branching = ltree_every (\a ts. LFINITE ts) End -Theorem ltree_finite_branching_rules : - !a ts. EVERY ltree_finite_branching ts ==> - ltree_finite_branching (Branch a (fromList ts)) +Theorem finite_branching_rules : + !a ts. EVERY finite_branching ts ==> + finite_branching (Branch a (fromList ts)) Proof - rw [ltree_finite_branching_def, EVERY_MEM] + rw [finite_branching_def, EVERY_MEM] >> qabbrev_tac ‘P = \(a :'a) (ts :'a ltree llist). LFINITE ts’ >> rw [Once ltree_every_cases] >- rw [Abbr ‘P’, LFINITE_fromList] >> rw [every_fromList_EVERY, EVERY_MEM] QED +(* The "primed" version uses ‘every’ (and ‘LFINITE’) instead of ‘EVERY’ *) +Theorem finite_branching_rules' : + !a ts. LFINITE ts /\ every finite_branching ts ==> + finite_branching (Branch a ts) +Proof + rw [finite_branching_def] +QED + Theorem ltree_finite_imp_finite_branching : - !t. ltree_finite t ==> ltree_finite_branching t + !t. ltree_finite t ==> finite_branching t Proof HO_MATCH_MP_TAC ltree_finite_ind - >> rw [ltree_finite_branching_rules] + >> rw [finite_branching_rules] QED (* cf. ltree_cases *) -Theorem ltree_finite_branching_cases : - !t. ltree_finite_branching t <=> - ?a ts. t = Branch a (fromList ts) /\ EVERY ltree_finite_branching ts +Theorem finite_branching_cases : + !t. finite_branching t <=> + ?a ts. t = Branch a (fromList ts) /\ EVERY finite_branching ts Proof - rw [ltree_finite_branching_def, Once ltree_every_cases] + rw [finite_branching_def, Once ltree_every_cases] >> EQ_TAC >> rw [LFINITE_fromList, every_fromList_EVERY] >> ‘?l. ts = fromList l’ by METIS_TAC [LFINITE_IMP_fromList] >> fs [every_fromList_EVERY] QED +Theorem finite_branching_cases' : + !t. finite_branching t <=> + ?a ts. t = Branch a ts /\ LFINITE ts /\ every finite_branching ts +Proof + rw [finite_branching_def, Once ltree_every_cases] +QED + (* |- (!a0. P a0 ==> ?a ts. a0 = Branch a ts /\ LFINITE ts /\ every P ts) ==> - !a0. P a0 ==> ltree_finite_branching a0 + !a0. P a0 ==> finite_branching a0 *) val lemma = ltree_every_coind |> (Q.SPEC ‘\(a :'a) (ts :'a ltree llist). LFINITE ts’) |> (Q.SPEC ‘P’) |> BETA_RULE - |> REWRITE_RULE [GSYM ltree_finite_branching_def]; + |> REWRITE_RULE [GSYM finite_branching_def]; -Theorem ltree_finite_branching_coind : +Theorem finite_branching_coind : !P. (!t. P t ==> ?a ts. t = Branch a (fromList ts) /\ EVERY P ts) ==> - !t. P t ==> ltree_finite_branching t + !t. P t ==> finite_branching t Proof NTAC 2 STRIP_TAC >> MATCH_MP_TAC lemma @@ -754,11 +770,18 @@ Proof >> rw [LFINITE_fromList, every_fromList_EVERY] QED -Theorem ltree_finite_branching_rewrite[simp] : - ltree_finite_branching (Branch a ts) <=> - LFINITE ts /\ every ltree_finite_branching ts +Theorem finite_branching_coind' : + !P. (!t. P t ==> ?a ts. t = Branch a ts /\ LFINITE ts /\ every P ts) ==> + !t. P t ==> finite_branching t +Proof + NTAC 2 STRIP_TAC + >> MATCH_MP_TAC lemma >> rw [] +QED + +Theorem finite_branching_rewrite[simp] : + finite_branching (Branch a ts) <=> LFINITE ts /\ every finite_branching ts Proof - SIMP_TAC std_ss [ltree_finite_branching_cases] + SIMP_TAC std_ss [finite_branching_cases] >> EQ_TAC >> rw [] >- rw [LFINITE_fromList] >- rw [every_fromList_EVERY] @@ -766,6 +789,103 @@ Proof >> fs [every_fromList_EVERY] QED +(*---------------------------------------------------------------------------* + * More ltree operators + *---------------------------------------------------------------------------*) + +Definition ltree_node_def[simp] : + ltree_node (Branch a ts) = a +End + +Definition ltree_children_def[simp] : + ltree_children (Branch a ts) = ts +End + +Theorem ltree_node_children_reduce[simp] : + Branch (ltree_node t) (ltree_children t) = t +Proof + ‘?a ts. t = Branch a ts’ by METIS_TAC [ltree_cases] + >> rw [] +QED + +Definition ltree_paths_def : + ltree_paths t = {p | ltree_lookup t p <> NONE} +End + +Theorem IN_ltree_lookup : + !p t. p IN ltree_paths t <=> ltree_lookup t p <> NONE +Proof + rw [ltree_paths_def] +QED + +Theorem NIL_IN_ltree_paths[simp] : + [] IN ltree_paths t +Proof + rw [ltree_paths_def, ltree_lookup_def] +QED + +Theorem ltree_paths_inclusive : + !l1 l2 t. l1 <<= l2 /\ l2 IN ltree_paths t ==> l1 IN ltree_paths t +Proof + Induct_on ‘l1’ + >> rw [] (* only one goal left *) + >> Cases_on ‘l2’ >> fs [] + >> rename1 ‘l1 <<= l2’ + >> Q.PAT_X_ASSUM ‘h = h'’ K_TAC + >> rename1 ‘h::l1 IN ltree_paths t’ + >> POP_ASSUM MP_TAC + >> ‘?a ts. t = Branch a ts’ by METIS_TAC [ltree_cases] + >> POP_ORW + >> simp [ltree_paths_def, ltree_lookup_def] + >> Cases_on ‘LNTH h ts’ >> rw [] + >> fs [GSYM IN_ltree_lookup] + >> FIRST_X_ASSUM MATCH_MP_TAC + >> Q.EXISTS_TAC ‘l2’ >> rw [] +QED + +Theorem ltree_el : + ltree_el t [] = SOME (ltree_node t,LLENGTH (ltree_children t)) /\ + ltree_el t (n::ns) = + case LNTH n (ltree_children t) of + NONE => NONE + | SOME a => ltree_el a ns +Proof + ‘?a ts. t = Branch a ts’ by METIS_TAC [ltree_cases] + >> simp [ltree_el_def] +QED + +Theorem ltree_lookup : + ltree_lookup t [] = SOME t /\ + ltree_lookup t (n::ns) = + case LNTH n (ltree_children t) of + NONE => NONE + | SOME a => ltree_lookup a ns +Proof + ‘?a ts. t = Branch a ts’ by METIS_TAC [ltree_cases] + >> simp [ltree_lookup_def] +QED + +Theorem ltree_lookup_iff_ltree_el[local] : + !p t. ltree_lookup t p <> NONE <=> ltree_el t p <> NONE +Proof + Induct_on ‘p’ + >- rw [ltree_lookup, ltree_el] + >> rw [Once ltree_lookup, Once ltree_el] + >> Cases_on ‘LNTH h (ltree_children t)’ >> fs [] +QED + +Theorem ltree_paths_alt : + !t. ltree_paths A = {p | ltree_el A p <> NONE} +Proof + rw [ltree_paths_def, Once EXTENSION, ltree_lookup_iff_ltree_el] +QED + +Theorem ltree_el_valid : + !p t. p IN ltree_paths t ==> ltree_el t p <> NONE +Proof + rw [ltree_paths_alt] +QED + (*---------------------------------------------------------------------------* * Rose tree is a finite variant of ltree, defined inductively. *---------------------------------------------------------------------------*) diff --git a/src/list/src/listScript.sml b/src/list/src/listScript.sml index 46c59d6e34..1a2b941914 100644 --- a/src/list/src/listScript.sml +++ b/src/list/src/listScript.sml @@ -2719,7 +2719,6 @@ val f_REVERSE_lemma = TAC_PROOF (([], (GEN (“x:('a)list”) (BETA_RULE (AP_THM x (“REVERSE (x:('a)list)”))))))), ASM_REWRITE_TAC[]]); - val SNOC_Axiom_old = prove( “!(e:'b) (f:'b -> ('a -> (('a)list -> 'b))). ?! fn1. @@ -2766,6 +2765,13 @@ val SNOC_Axiom = store_thm( val SNOC_INDUCT = save_thm("SNOC_INDUCT", prove_induction_thm SNOC_Axiom_old); val SNOC_CASES = save_thm("SNOC_CASES", hd (prove_cases_thm SNOC_INDUCT)); +(* cf. rich_listTheory.IS_PREFIX_SNOC *) +Theorem isPREFIX_SNOC[simp] : + l <<= SNOC x l +Proof + Induct_on ‘l’ >> rw [SNOC, isPREFIX] +QED + (*--------------------------------------------------------------*) (* List generator *) (* GENLIST f n = [f 0;...; f(n-1)] *)