diff --git a/examples/Crypto/Keccak/keccakScript.sml b/examples/Crypto/Keccak/keccakScript.sml index 1801be45d9..8cb1795eb7 100644 --- a/examples/Crypto/Keccak/keccakScript.sml +++ b/examples/Crypto/Keccak/keccakScript.sml @@ -2,7 +2,8 @@ open HolKernel Parse boolLib bossLib dep_rewrite blastLib bitLib reduceLib combinLib optionLib sptreeLib wordsLib computeLib; open optionTheory pairTheory arithmeticTheory combinTheory listTheory rich_listTheory whileTheory bitTheory dividesTheory wordsTheory - numposrepTheory numeral_bitTheory logrootTheory sptreeTheory; + indexedListsTheory numposrepTheory numeral_bitTheory + logrootTheory sptreeTheory; (* The SHA-3 Standard: https://doi.org/10.6028/NIST.FIPS.202 *) @@ -95,6 +96,15 @@ Proof \\ simp[LASTN_DROP, BUTLASTN_TAKE] QED +(* +Theorem word_from_bin_list_and: + LENGTH l1 = LENGTH l2 ==> + word_from_bin_list l1 && word_from_bin_list l2 = + word_from_bin_list (MAP2 (\x y. if (ODD x) /\ (ODD y) then 1 else 0) l1 l2) +Proof + rw[word_from_bin_list_def, l2w_def, word_and_n2w] + *) + Theorem chunks_append_divides: ∀n l1 l2. 0 < n /\ divides n (LENGTH l1) /\ ~NULL l1 /\ ~NULL l2 ==> @@ -309,6 +319,109 @@ Proof \\ simp[] QED +Theorem l2n_max: + 0 < b ==> + !ls. (l2n b ls = b ** (LENGTH ls) - 1) <=> + (EVERY ((=) (b - 1) o flip $MOD b) ls) +Proof + strip_tac + \\ Induct + \\ rw[l2n_def] + \\ rw[EXP] + \\ qmatch_goalsub_abbrev_tac`b * l + a` + \\ qmatch_goalsub_abbrev_tac`b ** n` + \\ gs[EQ_IMP_THM] + \\ conj_tac + >- ( + strip_tac + \\ Cases_on`n=0` \\ gs[] >- gs[Abbr`n`] + \\ `0 < b * b ** n` by simp[] + \\ `a + b * l + 1 = b * b ** n` by simp[] + \\ `(b * b ** n) DIV b = b ** n` by simp[MULT_TO_DIV] + \\ `(b * l + (a + 1)) DIV b = b ** n` by gs[] + \\ `(b * l) MOD b = 0` by simp[] + \\ `(b * l + (a + 1)) DIV b = (b * l) DIV b + (a + 1) DIV b` + by ( irule ADD_DIV_RWT \\ simp[] ) + \\ pop_assum SUBST_ALL_TAC + \\ `(a + 1) DIV b = if a = b - 1 then 1 else 0` + by ( + rw[] + \\ `a + 1 < b` suffices_by rw[DIV_EQ_0] + \\ simp[Abbr`a`] + \\ `h MOD b < b - 1` suffices_by simp[] + \\ `h MOD b < b` by simp[] + \\ gs[] ) + \\ `b * l DIV b = l` by simp[MULT_TO_DIV] + \\ pop_assum SUBST_ALL_TAC + \\ pop_assum SUBST_ALL_TAC + \\ `l < b ** n` by ( qunabbrev_tac`l` \\ qunabbrev_tac`n` + \\ irule l2n_lt \\ simp[] ) + \\ Cases_on`a = b - 1` \\ gs[] ) + \\ strip_tac + \\ rewrite_tac[LEFT_SUB_DISTRIB] + \\ qpat_x_assum`_ = a`(SUBST1_TAC o SYM) + \\ gs[SUB_LEFT_ADD] \\ rw[] + \\ Cases_on`n=0` \\ gs[] + \\ `b ** n <= b ** 0` by simp[] + \\ gs[EXP_BASE_LE_IFF] +QED + +Theorem l2n_2_neg: + !ls. + EVERY ($> 2) ls ==> + 2 ** LENGTH ls - SUC (l2n 2 ls) = l2n 2 (MAP (\x. 1 - x) ls) +Proof + Induct + \\ rw[l2n_def] + \\ gs[EXP, ADD1] + \\ first_x_assum(CHANGED_TAC o SUBST1_TAC o SYM) + \\ simp[LEFT_SUB_DISTRIB, LEFT_ADD_DISTRIB, SUB_RIGHT_ADD] + \\ qspecl_then[`ls`,`2`]mp_tac l2n_lt + \\ simp[] +QED + +Theorem word_not_bits: + LENGTH ls = dimindex(:'a) /\ EVERY ($> 2) ls ==> + ¬word_from_bin_list ls : 'a word = + word_from_bin_list (MAP (λx. 1 - x) ls) +Proof + rw[word_from_bin_list_def, l2w_def] + \\ rewrite_tac[word_2comp_n2w] + \\ Cases_on`l2n 2 ls = dimword(:'a) - 1` + >- ( + mp_then Any (qspec_then`ls`mp_tac) + l2n_max (SIMP_CONV(srw_ss())[]``0 < 2n`` |> EQT_ELIM) + \\ `dimword (:'a) = 2 ** LENGTH ls` by simp[dimword_def] + \\ first_assum (SUBST_ALL_TAC o SYM) + \\ pop_assum kall_tac + \\ pop_assum SUBST_ALL_TAC + \\ simp[ADD1, ZERO_LT_dimword] + \\ strip_tac + \\ qmatch_goalsub_abbrev_tac`A MOD N = 0` + \\ `A = 0` suffices_by rw[] + \\ rw[Abbr`A`, l2n_eq_0] + \\ gs[EVERY_MAP, EVERY_MEM] + \\ rw[] + \\ `2 > x` by simp[] + \\ `x < 2` by simp[] + \\ pop_assum mp_tac + \\ `x MOD 2 = 1` by simp[] + \\ rewrite_tac[NUMERAL_LESS_THM] + \\ strip_tac \\ fs[] ) + \\ `SUC (l2n 2 ls) < dimword(:'a)` + by ( + qspecl_then[`ls`,`2`]mp_tac l2n_lt + \\ gs[dimword_def] ) + \\ qmatch_goalsub_abbrev_tac`_ = n2w $ l2n 2 l1` + \\ `l2n 2 l1 < dimword(:'a)` + by ( + qspecl_then[`l1`,`2`]mp_tac l2n_lt + \\ gs[dimword_def, Abbr`l1`] ) + \\ simp[Abbr`l1`] + \\ drule l2n_2_neg + \\ simp[dimword_def] +QED + Theorem concat_word_list_bytes_to_64: LENGTH (ls: word8 list) = 8 ⇒ concat_word_list ls : word64 = @@ -3336,6 +3449,72 @@ Proof \\ simp[] QED +Definition chi_w64_def: + chi_w64 (s: word64 list) = + MAPi (λi w. let y = 5 * (i DIV 5) in + w ?? (~(EL (y + ((i + 1) MOD 5)) s) && + (EL (y + ((i + 2) MOD 5)) s))) s +End + +(* +Theorem chi_w64_thm: + state_bools_w64 bs ws ∧ + string_to_state_array bs = s ⇒ + state_bools_w64 (state_array_to_string (chi s)) (chi_w64 ws) +Proof + strip_tac + \\ gs[state_bools_w64_def] + \\ conj_asm1_tac >- rw[string_to_state_array_def, b2w_def] + \\ simp[chi_def, chi_w64_def] + \\ rewrite_tac[state_array_to_string_compute] + \\ qmatch_goalsub_abbrev_tac`5 * 5 * sw` + \\ `sw = s.w` by rw[Abbr`sw`] + \\ qunabbrev_tac`sw` \\ pop_assum SUBST_ALL_TAC + \\ qmatch_goalsub_abbrev_tac`GENLIST f n` + \\ simp[MAPi_GENLIST] + \\ `LENGTH (chunks 64 (MAP bool_to_bit bs)) = 25` + by ( + DEP_REWRITE_TAC[LENGTH_chunks] + \\ simp[NULL_LENGTH] + \\ simp[bool_to_bit_def, divides_def] + \\ strip_tac \\ gs[] ) + \\ qmatch_assum_abbrev_tac`m = 25` + \\ simp[LIST_EQ_REWRITE] + \\ `bs <> []` by (strip_tac \\ gs[]) + \\ `n <> 0` by gs[Abbr`n`] + \\ conj_asm1_tac + >- ( + DEP_REWRITE_TAC[LENGTH_chunks] + \\ simp[NULL_LENGTH] + \\ simp[bool_to_bit_def, divides_def, Abbr`n`] ) + \\ rpt strip_tac + \\ DEP_REWRITE_TAC[EL_MAP] + \\ simp[] + \\ `x DIV 5 < 5` by simp[DIV_LT_X] + \\ `5 * (x DIV 5) <= 20` by simp[] + \\ simp[] + \\ conj_asm1_tac + >- ( + `25 = 20 + 5` by simp[] + \\ pop_assum SUBST1_TAC + \\ conj_tac + \\ irule LESS_EQ_LESS_TRANS + \\ qmatch_goalsub_abbrev_tac`_ + y <= _` + \\ qexists_tac`20 + y` + \\ (reverse conj_tac >- simp[]) + \\ rewrite_tac[LT_ADD_LCANCEL] + \\ simp[Abbr`y`] ) + \\ DEP_REWRITE_TAC[word_not_bits, EL_chunks] + \\ simp[NULL_LENGTH] + \\ conj_tac + >- ( + irule EVERY_TAKE + \\ irule EVERY_DROP + \\ simp[EVERY_MAP, bool_to_bit_def] + \\ rw[EVERY_MEM] \\ rw[] ) + \\ +*) + (* TODO: define Rnd w64 version TODO: define (Keccak_p 24) w64 version