diff --git a/examples/lambda/barendregt/head_reductionScript.sml b/examples/lambda/barendregt/head_reductionScript.sml index 8af43b099c..2479250566 100644 --- a/examples/lambda/barendregt/head_reductionScript.sml +++ b/examples/lambda/barendregt/head_reductionScript.sml @@ -1987,207 +1987,6 @@ Proof >> rw [] QED -Theorem permutator_hreduce_lemma[local] : - ALL_DISTINCT vs /\ ~MEM y vs /\ LENGTH vs = LENGTH Ns /\ - EVERY (\e. DISJOINT (FV e) (set (SNOC y vs))) (SNOC N Ns) ==> - LAMl vs (LAM y (VAR y @* MAP VAR vs)) @* Ns @@ N @* args -h->* - N @* Ns @* args -Proof - rpt STRIP_TAC - >> REWRITE_TAC [GSYM LAMl_SNOC, GSYM appstar_SNOC] - >> qabbrev_tac ‘vs' = SNOC y vs’ - >> qabbrev_tac ‘Ns' = SNOC N Ns’ - >> qabbrev_tac ‘t = VAR y @* MAP VAR vs’ - >> Suff ‘N @* Ns = fromPairs vs' Ns' ' t’ - >- (Rewr' \\ - MATCH_MP_TAC hreduce_LAMl_appstar_ext \\ - rw [Abbr ‘vs'’, Abbr ‘Ns'’, ALL_DISTINCT_SNOC] \\ - Q.PAT_X_ASSUM ‘EVERY _ (SNOC N Ns)’ MP_TAC \\ - rw [EVERY_MEM, LIST_TO_SET_SNOC] \\ (* 2 subgoals, same tactics *) - METIS_TAC []) - >> ‘LENGTH vs' = LENGTH Ns'’ by rw [Abbr ‘vs'’, Abbr ‘Ns'’] - >> ‘y IN FDOM (fromPairs vs' Ns')’ by rw [FDOM_fromPairs, Abbr ‘vs'’] - >> simp [Abbr ‘t’, ssub_appstar] - >> Know ‘fromPairs vs' Ns' ' y = N’ - >- (‘y = LAST vs'’ by rw [Abbr ‘vs'’, LAST_SNOC] >> POP_ORW \\ - ‘vs' <> []’ by rw [Abbr ‘vs'’] \\ - rw [LAST_EL] \\ - qabbrev_tac ‘n = PRE (LENGTH Ns')’ \\ - Know ‘fromPairs vs' Ns' ' (EL n vs') = EL n Ns'’ - >- (MATCH_MP_TAC fromPairs_FAPPLY_EL \\ - rw [Abbr ‘vs'’, Abbr ‘Ns'’, ALL_DISTINCT_SNOC, Abbr ‘n’]) >> Rewr' \\ - ‘Ns' <> []’ by rw [Abbr ‘Ns'’] \\ - ‘EL n Ns' = LAST Ns'’ by rw [LAST_EL, Abbr ‘n’] >> POP_ORW \\ - rw [Abbr ‘Ns'’, LAST_SNOC]) - >> Rewr' - >> Suff ‘MAP ($' (fromPairs vs' Ns')) (MAP VAR vs) = Ns’ >- rw [] - >> rw [LIST_EQ_REWRITE] - >> rename1 ‘i < LENGTH Ns’ - >> Know ‘EL i vs IN FDOM (fromPairs vs' Ns')’ - >- (rw [FDOM_fromPairs] \\ - rw [Abbr ‘vs'’, MEM_EL] \\ - DISJ2_TAC >> Q.EXISTS_TAC ‘i’ >> art []) - >> rw [EL_MAP] - >> Know ‘(EL i vs = EL i vs') /\ (EL i Ns = EL i Ns')’ - >- ASM_SIMP_TAC std_ss [EL_SNOC, Abbr ‘vs'’, Abbr ‘Ns'’] - >> rw [] - >> MATCH_MP_TAC fromPairs_FAPPLY_EL - >> rw [Abbr ‘vs'’, Abbr ‘Ns'’, ALL_DISTINCT_SNOC] -QED - -(* NOTE: More arguments remain the same after head reductions *) -Theorem permutator_hreduce_more : - !n N Ns args. LENGTH Ns = n ==> - permutator n @* Ns @@ N @* args -h->* N @* Ns @* args -Proof - rpt STRIP_TAC - >> qabbrev_tac ‘X = BIGUNION (IMAGE FV (set Ns)) UNION FV N’ - >> Know ‘FINITE X’ - >- (rw [Abbr ‘X’] >> REWRITE_TAC [FINITE_FV]) - >> DISCH_THEN (MP_TAC o (MATCH_MP permutator_alt)) - >> DISCH_THEN (STRIP_ASSUME_TAC o (Q.SPEC ‘n’)) - >> POP_ORW - >> MATCH_MP_TAC permutator_hreduce_lemma - >> fs [ALL_DISTINCT_SNOC] - >> POP_ASSUM MP_TAC (* DISJOINT X ... *) - >> rw [Abbr ‘X’, EVERY_MEM, LIST_TO_SET_SNOC] >> art [] - >| [ (* goal 1 (of 2) *) - Q.PAT_X_ASSUM ‘!s. P’ (MP_TAC o (Q.SPEC ‘FV (e :term)’)) \\ - impl_tac >- (Q.EXISTS_TAC ‘e’ >> art []) >> rw [], - (* goal 2 (of 2) *) - Q.PAT_X_ASSUM ‘!s. P’ (MP_TAC o (Q.SPEC ‘FV (e :term)’)) \\ - impl_tac >- (Q.EXISTS_TAC ‘e’ >> art []) >> rw [] ] -QED - -(* NOTE: ‘EL n L’ is undefined without ‘n < LENGTH L’ *) -Theorem permutator_hreduce_more' : - !n L. n < LENGTH L ==> - permutator n @* L -h->* EL n L @* TAKE n L @* DROP (SUC n) L -Proof - rpt STRIP_TAC - >> Suff ‘permutator n @* L = - permutator n @* TAKE n L @@ EL n L @* DROP (SUC n) L’ - >- (Rewr' \\ - MATCH_MP_TAC permutator_hreduce_more >> rw [LENGTH_TAKE]) - >> Suff ‘L = TAKE n L ++ [EL n L] ++ DROP (SUC n) L’ - >- (DISCH_THEN - (GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) empty_rewrites o wrap) \\ - REWRITE_TAC [GSYM SNOC_APPEND] \\ - REWRITE_TAC [appstar_APPEND] \\ - REWRITE_TAC [appstar_SNOC]) - >> MATCH_MP_TAC (GSYM TAKE_DROP_SUC) >> art [] -QED - -Theorem permutator_hreduce_same_length : - !n N Ns. LENGTH Ns = n ==> permutator n @* Ns @@ N -h->* N @* Ns -Proof - rpt STRIP_TAC - >> MP_TAC (Q.SPECL [‘n’, ‘N’, ‘Ns’, ‘[]’] permutator_hreduce_more) - >> rw [] -QED - -(* This is an important theroem, hard to prove. - - To use this theorem, first one defines ‘M0 = principle_hnf M’ as abbreviation, - then define ‘n = LAMl_size M0’ and ‘vs = NEWS n (FV M)’ (or ‘FV M0’, or - ‘X UNION FV M0’, ‘X UNION FV M’), and this give us the needed antecedents: - - ALL_DISTINCT vs /\ DISJOINT (set vs) (FV M) /\ LENGTH vs = n - - Then use hnf_cases_shared to derive ‘M0 = LAMl vs (VAR y @* args)’ and then - ‘M1 = principle_hnf (M0 @* MAP VAR vs) = VAR y @* args’. - - The conclusion is that ‘principle_hnf (M @* MAP VAR vs) = M1’. - - Now ‘principle_hnf’ can be used to "denude" the outer LAMl of a solvable term. - - An extra list of free variables ‘l’ may need to append after MAP VAR vs. - *) -Theorem hreduce_hnf_appstar_cong : - !M vs y Ns args. ALL_DISTINCT vs /\ DISJOINT (set vs) (FV M) /\ - M -h->* LAMl vs (VAR y @* Ns) ==> - M @* MAP VAR vs @* args -h->* VAR y @* Ns @* args -Proof - rpt STRIP_TAC - >> Know ‘has_hnf M’ - >- (rw [has_hnf_def] \\ - Q.EXISTS_TAC ‘LAMl vs (VAR y @* Ns)’ >> rw [hnf_appstar] \\ - MATCH_MP_TAC hreduces_lameq >> art []) - >> DISCH_TAC - (* eliminating MAP VAR l *) - >> MATCH_MP_TAC hreduce_rules_appstar' - >> rw [is_abs_appstar] - >- (fs [] >> CCONTR_TAC >> fs [] \\ - ‘is_abs (VAR y @* Ns)’ by PROVE_TAC [hreduce_abs] >> fs []) - (* now l is eliminated *) - >> NTAC 4 (POP_ASSUM MP_TAC) - >> Suff ‘!M M0. M -h->* M0 ==> - has_hnf M ==> - !vs t. ALL_DISTINCT vs /\ DISJOINT (set vs) (FV M) /\ - (M0 = LAMl vs t) /\ ~is_abs t ==> - M @* MAP VAR vs -h->* t’ - >- (rpt STRIP_TAC >> FIRST_X_ASSUM irule >> rw []) - >> HO_MATCH_MP_TAC RTC_STRONG_INDUCT_RIGHT1 - >> rw [hreduce_BETA] (* only one goal left *) - >> Q.PAT_X_ASSUM ‘has_hnf M ==> P’ MP_TAC - >> RW_TAC std_ss [] - (* NOTE: this assumption is only possible with RTC_STRONG_INDUCT, etc. *) - >> Know ‘DISJOINT (set vs) (FV M0)’ - >- (MATCH_MP_TAC DISJOINT_SUBSET \\ - Q.EXISTS_TAC ‘FV M’ >> art [] \\ - MATCH_MP_TAC hreduce_FV_SUBSET >> art []) - >> DISCH_TAC - (* stage work. - - Now we need to discuss the possible shapes of M0: - - 1. M0 := LAMl vs (P @@ Q), where P @@ Q -h-> t - 2. M0 := LAMl vs1 (P @@ Q), where P @@ Q -h-> LAMl vs2 t, vs = vs1 ++ vs2 - - The first case is included in the second case. - - Using IH, we have: M @* MAP VAR vs1 -h->* P @@ Q -h-> LAMl vs2 t (hnf) - Thus (using RTC transitivity): M @* MAP VAR vs1 -h->* LAMl vs2 t (hnf) - - Since M @* MAP VAR vs = M @* MAP VAR vs1 @* MAP VAR vs2, the head reduction - process should proceed with the part ‘M @* MAP VAR vs1’ until arrive at - ‘P @@ Q’ (APP) without showing any LAM (otherwise it cannot be P @@ Q), and - then do it again to ‘LAMl vs2 t’, i.e. - - M @* MAP VAR vs1 @* MAP VAR vs2 -h->* P @@ Q @* MAP VAR vs2 - -h-> LAMl vs2 t @* MAP VAR vs2 - -h->* t (QED) - - The possible fact ‘hnf t’ is not used in the above reduction process. - *) - (* applying hreduce1_LAMl_cases *) - >> Know ‘ALL_DISTINCT vs /\ DISJOINT (set vs) (FV M0) /\ M0 -h-> LAMl vs t /\ - ~is_abs t’ >- art [] - >> DISCH_THEN (STRIP_ASSUME_TAC o (MATCH_MP hreduce1_LAMl_cases)) - (* stage work *) - >> Q.PAT_X_ASSUM ‘!vs t. P’ (MP_TAC o (Q.SPECL [‘vs1’, ‘N’])) - >> Know ‘ALL_DISTINCT vs1’ - >- (Q.PAT_X_ASSUM ‘ALL_DISTINCT vs’ MP_TAC \\ - rw [ALL_DISTINCT_APPEND]) - >> Know ‘DISJOINT (set vs1) (FV M)’ - >- (Q.PAT_X_ASSUM ‘DISJOINT (set vs) (FV M)’ MP_TAC \\ - rw [LIST_TO_SET_APPEND]) - >> RW_TAC std_ss [] - >> simp [appstar_APPEND] - >> MATCH_MP_TAC hreduce_TRANS - >> Q.EXISTS_TAC ‘LAMl vs2 t @* MAP VAR vs2’ - >> reverse CONJ_TAC >- rw [hreduce_BETA] - >> rw [Once RTC_CASES2] >> DISJ2_TAC - >> Q.EXISTS_TAC ‘N @* MAP VAR vs2’ - >> reverse CONJ_TAC - >- (MATCH_MP_TAC hreduce1_appstar >> art [] \\ - fs [is_comb_APP_EXISTS]) - >> MATCH_MP_TAC hreduce_rules_appstar' >> art [] - >> rw [is_abs_appstar] - >> CCONTR_TAC >> fs [] - >> PROVE_TAC [hreduce_abs] (* is_abs N *) -QED - (* This is copied from boehmScript.sml *) fun RNEWS_TAC (vs, r, n) X :tactic = qabbrev_tac ‘^vs = RNEWS ^r ^n ^X’ @@ -2540,6 +2339,207 @@ Proof >> Q.EXISTS_TAC ‘N’ >> art [] QED +Theorem permutator_hreduce_lemma[local] : + ALL_DISTINCT vs /\ ~MEM y vs /\ LENGTH vs = LENGTH Ns /\ + EVERY (\e. DISJOINT (FV e) (set (SNOC y vs))) (SNOC N Ns) ==> + LAMl vs (LAM y (VAR y @* MAP VAR vs)) @* Ns @@ N @* args -h->* + N @* Ns @* args +Proof + rpt STRIP_TAC + >> REWRITE_TAC [GSYM LAMl_SNOC, GSYM appstar_SNOC] + >> qabbrev_tac ‘vs' = SNOC y vs’ + >> qabbrev_tac ‘Ns' = SNOC N Ns’ + >> qabbrev_tac ‘t = VAR y @* MAP VAR vs’ + >> Suff ‘N @* Ns = fromPairs vs' Ns' ' t’ + >- (Rewr' \\ + MATCH_MP_TAC hreduce_LAMl_appstar_ext \\ + rw [Abbr ‘vs'’, Abbr ‘Ns'’, ALL_DISTINCT_SNOC] \\ + Q.PAT_X_ASSUM ‘EVERY _ (SNOC N Ns)’ MP_TAC \\ + rw [EVERY_MEM, LIST_TO_SET_SNOC] \\ (* 2 subgoals, same tactics *) + METIS_TAC []) + >> ‘LENGTH vs' = LENGTH Ns'’ by rw [Abbr ‘vs'’, Abbr ‘Ns'’] + >> ‘y IN FDOM (fromPairs vs' Ns')’ by rw [FDOM_fromPairs, Abbr ‘vs'’] + >> simp [Abbr ‘t’, ssub_appstar] + >> Know ‘fromPairs vs' Ns' ' y = N’ + >- (‘y = LAST vs'’ by rw [Abbr ‘vs'’, LAST_SNOC] >> POP_ORW \\ + ‘vs' <> []’ by rw [Abbr ‘vs'’] \\ + rw [LAST_EL] \\ + qabbrev_tac ‘n = PRE (LENGTH Ns')’ \\ + Know ‘fromPairs vs' Ns' ' (EL n vs') = EL n Ns'’ + >- (MATCH_MP_TAC fromPairs_FAPPLY_EL \\ + rw [Abbr ‘vs'’, Abbr ‘Ns'’, ALL_DISTINCT_SNOC, Abbr ‘n’]) >> Rewr' \\ + ‘Ns' <> []’ by rw [Abbr ‘Ns'’] \\ + ‘EL n Ns' = LAST Ns'’ by rw [LAST_EL, Abbr ‘n’] >> POP_ORW \\ + rw [Abbr ‘Ns'’, LAST_SNOC]) + >> Rewr' + >> Suff ‘MAP ($' (fromPairs vs' Ns')) (MAP VAR vs) = Ns’ >- rw [] + >> rw [LIST_EQ_REWRITE] + >> rename1 ‘i < LENGTH Ns’ + >> Know ‘EL i vs IN FDOM (fromPairs vs' Ns')’ + >- (rw [FDOM_fromPairs] \\ + rw [Abbr ‘vs'’, MEM_EL] \\ + DISJ2_TAC >> Q.EXISTS_TAC ‘i’ >> art []) + >> rw [EL_MAP] + >> Know ‘(EL i vs = EL i vs') /\ (EL i Ns = EL i Ns')’ + >- ASM_SIMP_TAC std_ss [EL_SNOC, Abbr ‘vs'’, Abbr ‘Ns'’] + >> rw [] + >> MATCH_MP_TAC fromPairs_FAPPLY_EL + >> rw [Abbr ‘vs'’, Abbr ‘Ns'’, ALL_DISTINCT_SNOC] +QED + +(* NOTE: More arguments remain the same after head reductions *) +Theorem permutator_hreduce_more : + !n N Ns args. LENGTH Ns = n ==> + permutator n @* Ns @@ N @* args -h->* N @* Ns @* args +Proof + rpt STRIP_TAC + >> qabbrev_tac ‘X = BIGUNION (IMAGE FV (set Ns)) UNION FV N’ + >> Know ‘FINITE X’ + >- (rw [Abbr ‘X’] >> REWRITE_TAC [FINITE_FV]) + >> DISCH_THEN (MP_TAC o (MATCH_MP permutator_alt)) + >> DISCH_THEN (STRIP_ASSUME_TAC o (Q.SPEC ‘n’)) + >> POP_ORW + >> MATCH_MP_TAC permutator_hreduce_lemma + >> fs [ALL_DISTINCT_SNOC] + >> POP_ASSUM MP_TAC (* DISJOINT X ... *) + >> rw [Abbr ‘X’, EVERY_MEM, LIST_TO_SET_SNOC] >> art [] + >| [ (* goal 1 (of 2) *) + Q.PAT_X_ASSUM ‘!s. P’ (MP_TAC o (Q.SPEC ‘FV (e :term)’)) \\ + impl_tac >- (Q.EXISTS_TAC ‘e’ >> art []) >> rw [], + (* goal 2 (of 2) *) + Q.PAT_X_ASSUM ‘!s. P’ (MP_TAC o (Q.SPEC ‘FV (e :term)’)) \\ + impl_tac >- (Q.EXISTS_TAC ‘e’ >> art []) >> rw [] ] +QED + +(* NOTE: ‘EL n L’ is undefined without ‘n < LENGTH L’ *) +Theorem permutator_hreduce_more' : + !n L. n < LENGTH L ==> + permutator n @* L -h->* EL n L @* TAKE n L @* DROP (SUC n) L +Proof + rpt STRIP_TAC + >> Suff ‘permutator n @* L = + permutator n @* TAKE n L @@ EL n L @* DROP (SUC n) L’ + >- (Rewr' \\ + MATCH_MP_TAC permutator_hreduce_more >> rw [LENGTH_TAKE]) + >> Suff ‘L = TAKE n L ++ [EL n L] ++ DROP (SUC n) L’ + >- (DISCH_THEN + (GEN_REWRITE_TAC (RATOR_CONV o ONCE_DEPTH_CONV) empty_rewrites o wrap) \\ + REWRITE_TAC [GSYM SNOC_APPEND] \\ + REWRITE_TAC [appstar_APPEND] \\ + REWRITE_TAC [appstar_SNOC]) + >> MATCH_MP_TAC (GSYM TAKE_DROP_SUC) >> art [] +QED + +Theorem permutator_hreduce_same_length : + !n N Ns. LENGTH Ns = n ==> permutator n @* Ns @@ N -h->* N @* Ns +Proof + rpt STRIP_TAC + >> MP_TAC (Q.SPECL [‘n’, ‘N’, ‘Ns’, ‘[]’] permutator_hreduce_more) + >> rw [] +QED + +(* This is an important theroem, hard to prove. + + To use this theorem, first one defines ‘M0 = principle_hnf M’ as abbreviation, + then define ‘n = LAMl_size M0’ and ‘vs = NEWS n (FV M)’ (or ‘FV M0’, or + ‘X UNION FV M0’, ‘X UNION FV M’), and this give us the needed antecedents: + + ALL_DISTINCT vs /\ DISJOINT (set vs) (FV M) /\ LENGTH vs = n + + Then use hnf_cases_shared to derive ‘M0 = LAMl vs (VAR y @* args)’ and then + ‘M1 = principle_hnf (M0 @* MAP VAR vs) = VAR y @* args’. + + The conclusion is that ‘principle_hnf (M @* MAP VAR vs) = M1’. + + Now ‘principle_hnf’ can be used to "denude" the outer LAMl of a solvable term. + + An extra list of free variables ‘l’ may need to append after MAP VAR vs. + *) +Theorem hreduce_hnf_appstar_cong : + !M vs y Ns args. ALL_DISTINCT vs /\ DISJOINT (set vs) (FV M) /\ + M -h->* LAMl vs (VAR y @* Ns) ==> + M @* MAP VAR vs @* args -h->* VAR y @* Ns @* args +Proof + rpt STRIP_TAC + >> Know ‘has_hnf M’ + >- (rw [has_hnf_def] \\ + Q.EXISTS_TAC ‘LAMl vs (VAR y @* Ns)’ >> rw [hnf_appstar] \\ + MATCH_MP_TAC hreduces_lameq >> art []) + >> DISCH_TAC + (* eliminating MAP VAR l *) + >> MATCH_MP_TAC hreduce_rules_appstar' + >> rw [is_abs_appstar] + >- (fs [] >> CCONTR_TAC >> fs [] \\ + ‘is_abs (VAR y @* Ns)’ by PROVE_TAC [hreduce_abs] >> fs []) + (* now l is eliminated *) + >> NTAC 4 (POP_ASSUM MP_TAC) + >> Suff ‘!M M0. M -h->* M0 ==> + has_hnf M ==> + !vs t. ALL_DISTINCT vs /\ DISJOINT (set vs) (FV M) /\ + (M0 = LAMl vs t) /\ ~is_abs t ==> + M @* MAP VAR vs -h->* t’ + >- (rpt STRIP_TAC >> FIRST_X_ASSUM irule >> rw []) + >> HO_MATCH_MP_TAC RTC_STRONG_INDUCT_RIGHT1 + >> rw [hreduce_BETA] (* only one goal left *) + >> Q.PAT_X_ASSUM ‘has_hnf M ==> P’ MP_TAC + >> RW_TAC std_ss [] + (* NOTE: this assumption is only possible with RTC_STRONG_INDUCT, etc. *) + >> Know ‘DISJOINT (set vs) (FV M0)’ + >- (MATCH_MP_TAC DISJOINT_SUBSET \\ + Q.EXISTS_TAC ‘FV M’ >> art [] \\ + MATCH_MP_TAC hreduce_FV_SUBSET >> art []) + >> DISCH_TAC + (* stage work. + + Now we need to discuss the possible shapes of M0: + + 1. M0 := LAMl vs (P @@ Q), where P @@ Q -h-> t + 2. M0 := LAMl vs1 (P @@ Q), where P @@ Q -h-> LAMl vs2 t, vs = vs1 ++ vs2 + + The first case is included in the second case. + + Using IH, we have: M @* MAP VAR vs1 -h->* P @@ Q -h-> LAMl vs2 t (hnf) + Thus (using RTC transitivity): M @* MAP VAR vs1 -h->* LAMl vs2 t (hnf) + + Since M @* MAP VAR vs = M @* MAP VAR vs1 @* MAP VAR vs2, the head reduction + process should proceed with the part ‘M @* MAP VAR vs1’ until arrive at + ‘P @@ Q’ (APP) without showing any LAM (otherwise it cannot be P @@ Q), and + then do it again to ‘LAMl vs2 t’, i.e. + + M @* MAP VAR vs1 @* MAP VAR vs2 -h->* P @@ Q @* MAP VAR vs2 + -h-> LAMl vs2 t @* MAP VAR vs2 + -h->* t (QED) + + The possible fact ‘hnf t’ is not used in the above reduction process. + *) + (* applying hreduce1_LAMl_cases *) + >> Know ‘ALL_DISTINCT vs /\ DISJOINT (set vs) (FV M0) /\ M0 -h-> LAMl vs t /\ + ~is_abs t’ >- art [] + >> DISCH_THEN (STRIP_ASSUME_TAC o (MATCH_MP hreduce1_LAMl_cases)) + (* stage work *) + >> Q.PAT_X_ASSUM ‘!vs t. P’ (MP_TAC o (Q.SPECL [‘vs1’, ‘N’])) + >> Know ‘ALL_DISTINCT vs1’ + >- (Q.PAT_X_ASSUM ‘ALL_DISTINCT vs’ MP_TAC \\ + rw [ALL_DISTINCT_APPEND]) + >> Know ‘DISJOINT (set vs1) (FV M)’ + >- (Q.PAT_X_ASSUM ‘DISJOINT (set vs) (FV M)’ MP_TAC \\ + rw [LIST_TO_SET_APPEND]) + >> RW_TAC std_ss [] + >> simp [appstar_APPEND] + >> MATCH_MP_TAC hreduce_TRANS + >> Q.EXISTS_TAC ‘LAMl vs2 t @* MAP VAR vs2’ + >> reverse CONJ_TAC >- rw [hreduce_BETA] + >> rw [Once RTC_CASES2] >> DISJ2_TAC + >> Q.EXISTS_TAC ‘N @* MAP VAR vs2’ + >> reverse CONJ_TAC + >- (MATCH_MP_TAC hreduce1_appstar >> art [] \\ + fs [is_comb_APP_EXISTS]) + >> MATCH_MP_TAC hreduce_rules_appstar' >> art [] + >> rw [is_abs_appstar] + >> CCONTR_TAC >> fs [] + >> PROVE_TAC [hreduce_abs] (* is_abs N *) +QED + val _ = export_theory() val _ = html_theory "head_reduction";