diff --git a/examples/Crypto/Keccak/keccakScript.sml b/examples/Crypto/Keccak/keccakScript.sml index 3817ea0559..45f61c5f67 100644 --- a/examples/Crypto/Keccak/keccakScript.sml +++ b/examples/Crypto/Keccak/keccakScript.sml @@ -10,43 +10,6 @@ val _ = new_theory "keccak"; val _ = numLib.temp_prefer_num(); -(* TODO: move *) -Theorem FUNPOW_COMPOSE_INV: - !n x f g h. - (!m. m < n ==> h(g(FUNPOW f m x)) = FUNPOW f m x) - ==> - FUNPOW (g o f o h) n (g x) = - g (FUNPOW f n x) -Proof - Induct \\ rw[] - \\ rw[FUNPOW_SUC] -QED - -(* TODO: move *) -Theorem FUNPOW_invariant_index: - !m x. - P x /\ - (!n. n < m ==> R (FUNPOW f n x)) /\ - (!x. P x /\ R x ==> P (f x)) ==> - P (FUNPOW f m x) -Proof - Induct>>rw[FUNPOW_SUC] -QED - -(* TODO: move *) -Theorem WHILE_FUNPOW: - (?n. ~P (FUNPOW f n s)) - ==> WHILE P f s = FUNPOW f (LEAST n. ~P (FUNPOW f n s)) s -Proof - strip_tac - \\ `~!n. P (FUNPOW f n s)` by PROVE_TAC[] - \\ `?x. OWHILE P f s = SOME x` by PROVE_TAC[OWHILE_EQ_NONE, option_CASES] - \\ irule OWHILE_WHILE - \\ rewrite_tac[OWHILE_def] - \\ IF_CASES_TAC - \\ fsrw_tac[][] -QED - Datatype: state_array = <| w: num diff --git a/src/num/theories/arithmeticScript.sml b/src/num/theories/arithmeticScript.sml index 91d2badf7e..87318041ae 100644 --- a/src/num/theories/arithmeticScript.sml +++ b/src/num/theories/arithmeticScript.sml @@ -3968,6 +3968,21 @@ Proof Induct \\ SRW_TAC[][FUNPOW_SUC] QED +Theorem FUNPOW_invariant_index: + !m x. + P x /\ + (!n. n < m ==> R (FUNPOW f n x)) /\ + (!x. P x /\ R x ==> P (f x)) ==> + P (FUNPOW f m x) +Proof + Induct >> SRW_TAC[][FUNPOW_SUC] + \\ first_assum irule + \\ `m < SUC m` by SRW_TAC[][LESS_SUC_REFL] + \\ SRW_TAC[][] + \\ first_assum irule \\ SRW_TAC[][] + \\ first_assum irule \\ SRW_TAC[][LESS_SUC] +QED + (* Theorem: FUNPOW f m (FUNPOW f n x) = FUNPOW f n (FUNPOW f m x) *) (* Proof: by FUNPOW_ADD, ADD_COMM *) Theorem FUNPOW_COMM: diff --git a/src/num/theories/whileScript.sml b/src/num/theories/whileScript.sml index 7e67c06ec6..7901f180cf 100644 --- a/src/num/theories/whileScript.sml +++ b/src/num/theories/whileScript.sml @@ -424,6 +424,19 @@ val OWHILE_IND = store_thm( THEN IMP_RES_TAC prim_recTheory.LESS_MONO THEN RES_TAC THEN FULL_SIMP_TAC bool_ss [FUNPOW]); +Theorem WHILE_FUNPOW: + (?n. ~P (FUNPOW f n s)) + ==> WHILE P f s = FUNPOW f (LEAST n. ~P (FUNPOW f n s)) s +Proof + strip_tac + \\ `~!n. P (FUNPOW f n s)` by PROVE_TAC[] + \\ `?x. OWHILE P f s = SOME x` by PROVE_TAC[OWHILE_EQ_NONE, option_CASES] + \\ irule OWHILE_WHILE + \\ rewrite_tac[OWHILE_def] + \\ IF_CASES_TAC + \\ FULL_SIMP_TAC(srw_ss())[] +QED + Theorem TAILREC_EXISTS[local]: ?tailrec. !(f:'a -> 'a + 'b) (x:'a).