Skip to content

Latest commit

 

History

History
263 lines (209 loc) · 27.4 KB

README.md

File metadata and controls

263 lines (209 loc) · 27.4 KB

S2G++ Experiments

This repository holds the experiment definitions for the Series2Graph++ paper. The code for the algorithm can be found here.

The following experiments can be reproduced:

The results with the distributed version of S2G++ cannot be reproduced with this repository alone. Therefore, please generate the scalability datasets and start S2G++ from multiple machines as described in its repository.

Requirements

  • Python 3
  • GutenTAG (will be installed with this repository)
  • TimeEval (will be installed with this repository)
  • Docker

Installation

python setup.py install

Build Docker Images

Uses images from TimeEval-Algorithms repository.

./build-images.sh

Generate Datasets

This repository contains the configurations for generating the following datasets:

To generate the listed datasets, execute the command below with the corresponding variable values.

python -m gutenTAG --config-yaml <dataset-name>.yaml [--seed <dataset-seed>] --output-dir data/<dataset-name> --addons gutenTAG.addons.timeeval.TimeEvalAddOn

Download Exathlon Dataset

The integrated Exathlon [1] datasets can be downloaded ⬇ here. Also download the ⬇ index file that holds the metadata for the datasets and rename it to datasets.csv.

Place the files in the data folder as follows:

data:
  exathlon:
    multivariate: ...  # this will be extracted from the Exathlon.zip
    datasets.csv

Quality Experiment

For this experiment, we use the TimeEval evaluation tool with the script in haystack-experiment.py. If you want to repeat this experiment on your machines, be aware to change the remote machines to your addresses in this part of the script

python experiment_scripts/haystack-experiment.py
python experiment_scripts/exathlon-experiment.py

Correlation Anomaly Detection Experiment

For this experiment, we use the TimeEval evaluation tool with the script in comut-experiment.py. If you want to repeat this experiment on your machines, be aware to change the remote machines to your addresses in this part of the script

python experiment_scripts/comut-experiment.py

Self-Correction Experiment

For this experiment, we use the TimeEval evaluation tool with the script in self-correction-experiment.py. If you want to repeat this experiment on your machines, be aware to change the remote machines to your addresses in this part of the script

python experiment_scripts/self-correction-experiment.py

Scalability Experiment

For this experiment, we use the TimeEval evaluation tool with the scripts in scalability-experiment.py and scalability-xl-experiment.py. If you want to repeat this experiment on your machines, be aware to change the remote machines to your addresses in this part of the script and this part of the other script.

python experiment_scripts/scalability-experiment.py
python experiment_scripts/scalability-xl-experiment.py

Explainability Experiment

For this experiment, we do not use TimeEval. The script in explainability-experiment.py performs the experiment. If you want to repeat this experiment on your machines, be aware to adapt the local docker image name here and group here that you have built before.

python experiment_scripts/explainability-experiment.py --datasets data/haystack-explain

Hyper-Parameter Optimization

For this experiment, we do not use TimeEval. The scripts in experiments/hyperopt perform the optimization. If you want to repeat this experiment on your machines, be aware to adapt the local docker image name here.

python -m hyperopt --algorithms <image-name> --hyperopt-calls 30 --training-type unsupervised --output-file results.json --dataset-dir data/hyperopt --mode whole_collection

Results

Quality Haystack (AUROC)

dataset_name DAMP DBStream LSTM-AD Normalizing Flows S2G++20p-KDE Torsk k-Means mSTAMP
haystack-ecg-10-pattern 0.0151515151515151 0.9972070707070706 0.9999888888888888 0.9999989898989898 155 0.999960606060606 0.9999939393939394
haystack-ecg-10-platform 1.0 0.8624398989898989 0.2233696969696969 0.8433080808080807 0.9436666666666668 0.5196828282828283 0.9998272727272728
haystack-ecg-20-pattern 0.98929898989899 1.0 0.9998717171717172 0.9942292929292929 0.7543272727272727 1.0
haystack-ecg-20-platform 0.9946262626262624 0.8395853535353536 0.8782464646464647 0.9963040404040404 0.8833626262626263 0.9998131313131312
haystack-ecg-3-pattern 0.0151515151515151 0.5060181818181818 0.9993909090909092 0.9999161616161616 0.9996909090909092 0.2388383838383838 0.99999898989899 0.999940404040404
haystack-ecg-3-platform 0.7982858585858585 0.7292272727272726 0.9997373737373736 0.9982080808080808 0.999618181818182 0.9745777777777778 0.999840404040404 0.9998272727272728
haystack-ecg-4-pattern 0.9999838383838384 0.9674454545454544 0.9994565656565656 0.9998989898989898 0.99989898989899 0.913160606060606 1.0 0.99999898989899
haystack-ecg-4-platform 0.9965535353535352 0.8991828282828283 0.9999848484848484 0.999880808080808 0.999539393939394 0.5734444444444444 0.9998545454545454 0.9998080808080808
haystack-ecg-5-pattern 0.0151515151515151 0.9830858585858586 0.9993939393939394 0.9975757575757576 0.1451010101010101 0.996989898989899 0.9982676767676768
haystack-ecg-5-platform 0.9999969696969696 0.7311474747474748 0.9998838383838384 0.8775575757575758 0.9668646464646466 0.8868979797979797 0.9998272727272728
haystack-ecg-8-pattern 0.9915323232323232 0.4993474747474747 0.9995424242424242 0.9986373737373736 0.1951515151515151 0.9456080808080808 0.99999898989899
haystack-ecg-8-platform 0.9999282828282828 0.8235186868686868 0.2768828282828283 0.9840535353535352 0.9335656565656568 0.443770707070707 0.9998080808080808
haystack-sine-10-pattern 0.999990909090909 0.8429060606060607 0.9976242424242424 0.9595555555555556 0.9998919191919192 0.9999888888888888
haystack-sine-10-platform 0.99999898989899 0.99999898989899 0.99999898989899 0.9969111111111112 0.9999545454545454 1.0
haystack-sine-20-pattern 0.8494010101010101 0.9998939393939394 0.9999969696969696 0.1115151515151515 0.9995252525252524 0.9999828282828284
haystack-sine-20-platform 0.9999939393939394 0.9999969696969696 0.9999565656565657 0.9958646464646465 0.9998929292929292 0.99999898989899
haystack-sine-3-pattern 0.9999636363636364 0.4893323232323232 0.9965616161616162 0.3352161616161616 0.999960606060606 0.999650505050505 0.9999939393939394 0.9999929292929292
haystack-sine-3-platform 0.997540404040404 0.99999898989899 0.9997161616161616 0.9999151515151516 0.9999333333333332 0.9968919191919192 1.0 1.0
haystack-sine-4-pattern 0.9999939393939394 0.7308232323232322 0.991710101010101 1.0 0.999441414141414 0.999980808080808 0.9999969696969696
haystack-sine-4-platform 0.99999898989899 0.9999969696969696 0.9969363636363636 0.99999898989899 0.996259595959596 1.0 1.0
haystack-sine-5-pattern 0.999978787878788 0.999989898989899 0.9937858585858586 0.9999939393939394 0.999540404040404 0.9999929292929292 0.99999898989899
haystack-sine-5-platform 0.99999898989899 0.9999969696969696 0.997130303030303 0.9999343434343436 0.9952929292929292 0.99999898989899 0.99999898989899
haystack-sine-8-pattern 0.99980101010101 1.0 1.0 0.9940171717171716 0.9999262626262628 0.999978787878788
haystack-sine-8-platform 0.99999898989899 0.9999989898989898 0.999849494949495 0.9949848484848484 1.0 1.0

Quality Exathlon (AUROC)

dataset_name Normalizing Flows k-Means LSTM-AD DBStream Torsk mSTAMP DAMP S2G++
10_2_1000000_67 0.5247958573989245 0.4807613721356725 0.982134015905429 0.5
10_3_1000000_75 0.3852350079632621 0.3505108595863955 0.0080461903999536 0.8015511272318788 0.9026959965598674
10_4_1000000_79 0.6300916057068899 0.1995649791532564 0.4599119755715554
1_4_1000000_80-14 0.6787272058097961
2_1_100000_60-20 0.9406927619870558 0.0224730045974397 0.9936425594526572
2_1_100000_60-22 0.9406927619870558 0.0225032960482284 0.9936524082487244
2_2_200000_69 0.0023683271552322 0.7921739647550895 0.4864223838880409 0.5
3_2_1000000_71 0.006086205220461 0.5889577755859283 0.0 1.0
3_2_500000_70 0.0029763140772734 0.4276001218212274 0.0 0.5
5_1_100000_64-33 0.967754883320613 0.9382586025088728
5_1_100000_64-34 0.967754883320613 0.9382586025088728
5_1_100000_64-35 0.967754883320613
5_1_100000_64-36 0.967754883320613
5_1_100000_64-37 0.967754883320613 0.9382586025088728
5_1_100000_64-40 0.967754883320613
5_1_100000_64-63 0.967754883320613
5_1_500000_62 0.545655043189805 0.8549108629832907 0.0355722168535184 0.4127790046364749
5_2_1000000_72 0.0023666568313285 0.4182707416988602 0.0 0.5
6_1_500000_65 0.5795468140597708 0.5554898823538037 0.0449571988340905 0.5601654104360192
6_3_200000_76 0.1715613542717819 0.3962715506874961 0.0007092595837116 0.5215515535485845 0.7026352076120903
8_3_200000_73 0.0852182264577008 0.3056725277367201 0.0333016142990544 0.7071225623163423 0.9624145746490348
8_4_1000000_77 0.5439106577965742 0.412400892892084 0.5173432755878202
9_2_1000000_66 0.0005808887598024 0.5162493488737621 0.1796308579962905 0.5
9_3_500000_74 0.0947290489429651 0.2919681920995121 0.0001116512094114 0.7192167364730152 0.9867268614303488
9_4_1000000_78 0.7253936833690697 0.1364997309795128 0.434416502183812

Quality CoMuT (AUROC)

dataset_name DAMP DBStream LSTM-AD Normalizing Flows S2G++20p-KDE S2G++20p-MeanShift Torsk k-Means mSTAMP
rmj-2-short-anomalies-on-2-different-channel 0.4830745967741936 0.4236391129032257 0.7055052923387097 0.9998941532258064 0.8806791834677419 0.6777457157258064 0.6269430443548387 0.975249495967742 0.5681955645161291
rmj-2-short-anomalies-on-2-same-channel 0.5441885080645161 0.5094254032258064 0.9586076108870968 0.9999558971774192 0.7440877016129034 0.778210685483871 0.7420646421370969 0.9599357358870968 0.5855090725806451
rmj-3-short-anomalies-on-3-different-channel 0.5410509446693657 0.558502024291498 0.6400033738191633 0.8531604251012147 0.9451737516869096 0.9478213562753036 0.7709665991902833 0.9652732793522268 0.5916329284750338
rmj-3-short-anomalies-on-3-same-channel 0.3049907219973009 0.5193657219973009 0.6989304993252361 0.9996339406207828 0.7962710863697706 0.8065435222672065 0.7560517881241564 0.9445428475033736 0.5477159244264508
rmj-large-mode-correlation-on-2 0.024390243902439 0.9835365853658536 0.9995274390243902 0.9999993648373984 0.9379427083333334 0.9638401930894308 0.326930894308943 0.9269829776422764 0.9242644817073172
rmj-large-mode-correlation-on-3 0.024390243902439 0.955081300813008 0.9606415142276424 0.9999771341463414 0.9887258638211384 0.9997345020325203 0.3340447154471544 0.7721176321138211 0.8943749999999999
rmj-large-mode-correlation-on-4 0.9526829268292684 0.8819105691056911 0.9157590193089432 0.993725863821138 0.99721481199187 0.6027686737804878 0.858009400406504 0.8800120680894309
rmj-medium-mode-correlation-on-2 0.1904019657258064 0.93125 0.990616179435484 0.9999432963709678 0.6741456653225807 0.3536290322580645 0.8032459677419355 0.7744833669354838
rmj-medium-mode-correlation-on-3 0.2704133064516129 0.7215725806451613 0.9876247479838708 0.0 0.9974722782258064 0.998773941532258 0.9487941028225808 0.7932850302419355 0.7959488407258064
rmj-medium-mode-correlation-on-4 0.3802532762096774 0.6973790322580645 0.5820501512096774 0.9991973286290322 0.999562752016129 0.9790221774193548 0.7643573588709678 0.7387323588709677
rmj-short-mode-correlation-on-2 0.8868147590361446 0.6831325301204819 0.7083157630522088 0.999992469879518 0.9969176706827308 0.9993624497991968 0.94714859437751 0.9921812248995984 0.5696134538152611
rmj-short-mode-correlation-on-3 0.0060240963855421 0.9877510040160644 0.3636295180722891 0.999984939759036 0.6640185742971888 0.4299623493975903 0.3183734939759036 0.977753514056225 0.629683734939759
rmj-short-mode-correlation-on-4 0.1182856425702811 0.8753012048192771 0.9739984939759035 0.517781124497992 0.5528815261044177 0.9295958835341364 0.9578338353413656 0.5565210843373494

Scalability Length (Seconds)

dataset_length DAMP DBStream LSTM-AD Normalizing Flows S2G++1p-KDE S2G++20p-KDE S2G++20p-KDE-Distributed Torsk k-Means mSTAMP
10000.0 12.075611035029093 9.348547538121542 3.2856557369232178 4.542788585027059 1.3018639087677002 1.2011919816335042 1.41 16.68769347667694 4.743401845296224 19.197791973749798
20000.0 13.092211564381918 11.285099744796753 4.064898570378621 4.829745769500732 1.6622765858968098 1.416413386662801 1.2533333333333332 32.92470562458038 15.050610621770224 29.169357538223267
40000.0 15.649154980977377 16.905903339385986 5.791442632675171 5.314453999201457 2.397040049235026 1.6868778069814045 1.36 30.949349880218502 52.539663235346474
80000.0 19.910025993982952 24.499158143997192 9.488367795944214 5.58642824490865 3.7058140436808267 2.347942670186361 1.6033333333333335 129.910418510437 49.090735832850136 105.27639039357503
160000.0 29.01512058575948 45.515793800354004 16.417590618133545 6.769598404566447 6.730244716008504 3.7460657755533853 2.12 261.6010913848877 87.97411902745564 246.97682166099548
320000.0 48.28951462109884 75.81388735771179 30.331711053848267 9.351157426834106 12.616399049758911 6.75771164894104 3.0366666666666666 513.1366304556528 247.7031650543213 680.5834542910258
640000.0 121.64392439524333 150.4646205107371 57.64446973800659 14.137539784113565 23.71082814534505 12.772179047266642 4.483333333333333 1016.2230826616288 350.16846052805585 2480.4266378084817
1280000.0 354.952360312144 299.86670994758606 114.48484245936076 23.402103424072266 43.65340534845988 25.39780306816101 7.8 2046.2930001020432 881.837824344635 10058.95285987854
2560000.0 775.7102287610372 610.2582166989645 42.55691782633463 85.1538044611613 51.89838910102844 14.386666666666665 4183.852019945781 1336.9886227846146
5120000.0 2599.2843623956046 1211.973451455434 168.20808506011963 106.54486052195232 28.30333333333333 8028.050092697144 2179.2367794513702

Scalability Width (Seconds)

dataset_width DAMP DBStream LSTM-AD Normalizing Flows S2G++1p-KDE S2G++20p-KDE S2G++20p-KDE-Distributed Torsk k-Means mSTAMP
1.0 12.075611035029093 9.348547538121542 3.2856557369232178 4.542788585027059 1.3018639087677002 1.2011919816335042 1.41 16.68769347667694 4.743401845296224 19.197791973749798
2.0 17.467657407124836 20.218186060587566 3.3384247620900473 4.557957649230957 1.3639200528462727 1.48196013768514 1.18 17.2236385345459 5.087292512257894 29.303621292114258
4.0 32.91497882207235 121.27050550778706 3.611283302307129 4.59865125020345 1.8072455724080403 1.9404499530792234 1.2633333333333334 28.70516574382782 5.525273402531941 45.396846771240234
6.0 42.82834680875143 480.99190560976666 3.601776917775472 4.6883517901102705 2.260209242502848 2.4166566530863443 1.4033333333333333 29.356188853581745 5.778182903925578 62.06157064437866
8.0 55.562777280807495 844.2580451170603 3.6658533414204917 4.620950698852539 2.6820371945699057 2.6612462997436523 1.1866666666666668 36.36633038520813 6.244294166564941 80.52430327733357
10.0 68.48312910397847 1062.2268037001293 3.743560314178467 4.535080591837565 3.060086170832316 3.3338159720102944 1.6033333333333335 35.71759879589081 6.863771756490071 98.25729060173035
12.0 82.49880178769429 1312.9044578870137 3.793130874633789 4.525184551874797 3.4842395782470703 3.7656898498535156 1.7133333333333332 37.29258894920349 6.822491963704427 117.95340887705485
14.0 90.51881257692973 1523.287297487259 3.9435561498006186 4.6252249876658125 4.003415425618489 4.3387344678243 1.8166666666666667 35.601834416389465 7.522425254185994 134.5978283882141
16.0 116.64748032887776 1723.3104089895885 3.711128075917562 4.745351473490397 4.424281199773152 4.765927871068318 1.9233333333333331 31.660951137542725 7.638348420461019 152.87937259674072
18.0 122.75802985827129 1955.4230727354686 3.9406041304270425 4.6945118109385175 4.802847385406494 5.183344999949138 2.0366666666666666 37.374690771102905 8.550241549809774 174.99589657783508
20.0 128.34047985076904 2192.9152540365853 3.9133986632029214 4.856647888819377 5.674747069676717 6.041692574818929 2.1666666666666665 35.20727777481079 8.485737880071005 195.6306687196096
50.0 344.4562503496806 5699.3187121550245 4.521922826766968 14.541966756184896 15.162824233373007 4.086666666666667 46.64571273326874 14.823659499486288 520.5065803527832
100.0 793.7266813119253 11255.891539176306 14.204445997873941 29.790454308191936 31.270607630411785 7.446666666666666 63.95404569307963 22.300610780715942 1109.5663034121196
200.0 1629.9643823305767 22596.336089611053 14.970733404159546 75.0127313931783 75.78184668223064 16.456666666666667 269.0402355194092 44.739540576934814 2246.95068359375
500.0 4056.7618872324624 15.025033712387083 51.10999999999999 1264.844603061676 98.53497529029846 5804.233536958695
1000.0 8153.6903151671095 43.55677366256714 194.0 4581.0699853897095 199.5178084373474 11967.08388543129

References

[1] Exathlon: A Benchmark for Explainable Anomaly Detection over Time Series. Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and Nesime Tatbul. Proceedings of the VLDB Endowment (PVLDB), 14(11): 2613 - 2626, 2021.