-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_ae.py
136 lines (117 loc) · 4.85 KB
/
main_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import matplotlib.pyplot as plt
from nets.ae_nets import *
from data_loader import DataLoaderAE
from train import TrainerAE
import torch
import numpy as np
import argparse
import os
import random
seed = 1
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def _init_fn(worker_id):
np.random.seed(seed + worker_id)
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='./data', help='the dir of data set')
parser.add_argument('--batch_size', type=int, default=256, help='the batch size')
parser.add_argument('--lr', type=float, default=2e-4, help='the learning rate')
parser.add_argument('--nEpoch', type=int, default=10000, help='the number of epochs')
parser.add_argument('--cuda', action='store_true', help='enables cuda')
parser.add_argument('--checkpoints', type=str, default='results', help='folder to output model checkpoints')
parser.add_argument('--checkpoints_weight', type=str, default='', help='model weight')
parser.add_argument('--workers', type=int, default=4, help='number of data loading workers')
parser.add_argument('--embed-dim', type=int, default=16, help='number of data loading workers')
if __name__ == '__main__':
opt = parser.parse_args()
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
opt.cuda = True
opts = {k: v for k, v in opt._get_kwargs()}
opts['checkpoints'] += 'AE_ID=%d_wgan' % (opts['embed_dim'])
opts['checkpoints'] = 'shape-anomaly-detection' + opts['checkpoints']
print(opts)
try:
os.makedirs(opts['checkpoints'])
except OSError:
pass
train_size = 40000
val_size = train_size + 3000
test_size = val_size + 0
data_x = np.load('config/data_extend_wgan.npy').astype(np.float32)
data_x = data_x.reshape(-1, 2, 32)
inds = np.arange(data_x.shape[0])
np.random.shuffle(inds)
min_ = data_x[inds[:train_size]].min((0, 2))
max_ = data_x[inds[:train_size]].max((0, 2))
mu = (min_ + max_) / 2.
sig = (max_ - min_) / 2.
data_x = (data_x - mu.reshape(1, 2, 1)) / sig.reshape(1, 2, 1)
mu = torch.from_numpy(mu.reshape(1, 2, 1))
sig = torch.from_numpy(sig.reshape(1, 2, 1))
train_x = torch.from_numpy(data_x[inds[:train_size]])
val_x = torch.from_numpy(data_x[inds[train_size:val_size]])
test_x = torch.from_numpy(data_x[inds[val_size:]])
train_set = DataLoaderAE(train_x)
train_loader = torch.utils.data.DataLoader(dataset=train_set, num_workers=int(opt.workers),
batch_size=opts['batch_size'], shuffle=True, drop_last=True,
worker_init_fn=_init_fn)
val_set = DataLoaderAE(val_x)
val_loader = torch.utils.data.DataLoader(dataset=val_set, num_workers=int(opt.workers),
batch_size=1, shuffle=False, drop_last=True,
worker_init_fn=_init_fn)
test_set = DataLoaderAE(test_x)
test_loader = torch.utils.data.DataLoader(dataset=test_set, num_workers=int(opt.workers),
batch_size=1, shuffle=False, drop_last=True,
worker_init_fn=_init_fn)
params_dict = [
[7, 7, 8, 10],
[4, 6, 10, 10],
[4, 8, 8, 10],
[4, 5, 10, 10],
[4, 7, 8, 10],
[5, 7, 7, 10],
[4, 8, 8, 8],
[5, 6, 7, 10],
[3, 4, 9, 10],
[5, 6, 7, 9],
[6, 6, 7, 8],
[3, 5, 7, 10],
[4, 5, 7, 9],
[4, 6, 7, 8],
[4, 4, 7, 9],
[4, 4, 8, 8],
]
aecoder = AEcoder(
ndfs=params_dict[opts['embed_dim']-1],
ngfs=params_dict[opts['embed_dim']-1],
embed_dim=opts['embed_dim']
)
# input(sum([p.numel() for p in aecoder.parameters()]))
trainer = TrainerAE(aecoder, train_loader, val_loader, test_loader, opts, mu, sig)
trainer.run()
#
# errs = []
# for e in range(1, 17):
# aecoder = AEcoder(
# ndfs=params_dict[e - 1],
# ngfs=params_dict[e - 1],
# embed_dim=e
# )
# # input(sum([p.numel() for p in aecoder.parameters()]))
# opts['checkpoints'] = 'shape-anomaly-detection/resultsAE_ID=%d_wgan' % e
# trainer = TrainerAE(aecoder, train_loader, val_loader, test_loader, opts, mu, sig)
# err, _ = trainer.test()
# errs.append(err)
# plt.plot(list(range(1, 17)), errs, 'o-')
# plt.xlabel('dimension of latent space')
# plt.ylabel('reconstruction error')
# # plt.scatter(5, errs[4], c='r', marker='o')
# plt.xticks(list(range(1, 17)))
# plt.show()