forked from QingyongHu/RandLA-Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_S3DIS.py
executable file
·269 lines (226 loc) · 12.1 KB
/
main_S3DIS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from os.path import join
from RandLANet import Network
from tester_S3DIS import ModelTester
from helper_ply import read_ply
from helper_tool import ConfigS3DIS as cfg
from helper_tool import DataProcessing as DP
from helper_tool import Plot
import tensorflow as tf
import numpy as np
import time, pickle, argparse, glob, os
class S3DIS:
def __init__(self, test_area_idx):
self.name = 'S3DIS'
self.path = '/data/S3DIS'
self.label_to_names = {0: 'ceiling',
1: 'floor',
2: 'wall',
3: 'beam',
4: 'column',
5: 'window',
6: 'door',
7: 'table',
8: 'chair',
9: 'sofa',
10: 'bookcase',
11: 'board',
12: 'clutter'}
self.num_classes = len(self.label_to_names)
self.label_values = np.sort([k for k, v in self.label_to_names.items()])
self.label_to_idx = {l: i for i, l in enumerate(self.label_values)}
self.ignored_labels = np.array([])
self.val_split = 'Area_' + str(test_area_idx)
self.all_files = glob.glob(join(self.path, 'original_ply', '*.ply'))
# Initiate containers
self.val_proj = []
self.val_labels = []
self.possibility = {}
self.min_possibility = {}
self.input_trees = {'training': [], 'validation': []}
self.input_colors = {'training': [], 'validation': []}
self.input_labels = {'training': [], 'validation': []}
self.input_names = {'training': [], 'validation': []}
self.load_sub_sampled_clouds(cfg.sub_grid_size)
def load_sub_sampled_clouds(self, sub_grid_size):
tree_path = join(self.path, 'input_{:.3f}'.format(sub_grid_size))
for i, file_path in enumerate(self.all_files):
t0 = time.time()
cloud_name = file_path.split('/')[-1][:-4]
if self.val_split in cloud_name:
cloud_split = 'validation'
else:
cloud_split = 'training'
# Name of the input files
kd_tree_file = join(tree_path, '{:s}_KDTree.pkl'.format(cloud_name))
sub_ply_file = join(tree_path, '{:s}.ply'.format(cloud_name))
data = read_ply(sub_ply_file)
sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T
sub_labels = data['class']
# Read pkl with search tree
with open(kd_tree_file, 'rb') as f:
search_tree = pickle.load(f)
self.input_trees[cloud_split] += [search_tree]
self.input_colors[cloud_split] += [sub_colors]
self.input_labels[cloud_split] += [sub_labels]
self.input_names[cloud_split] += [cloud_name]
size = sub_colors.shape[0] * 4 * 7
print('{:s} {:.1f} MB loaded in {:.1f}s'.format(kd_tree_file.split('/')[-1], size * 1e-6, time.time() - t0))
print('\nPreparing reprojected indices for testing')
# Get validation and test reprojected indices
for i, file_path in enumerate(self.all_files):
t0 = time.time()
cloud_name = file_path.split('/')[-1][:-4]
# Validation projection and labels
if self.val_split in cloud_name:
proj_file = join(tree_path, '{:s}_proj.pkl'.format(cloud_name))
with open(proj_file, 'rb') as f:
proj_idx, labels = pickle.load(f)
self.val_proj += [proj_idx]
self.val_labels += [labels]
print('{:s} done in {:.1f}s'.format(cloud_name, time.time() - t0))
# Generate the input data flow
def get_batch_gen(self, split):
if split == 'training':
num_per_epoch = cfg.train_steps * cfg.batch_size
elif split == 'validation':
num_per_epoch = cfg.val_steps * cfg.val_batch_size
self.possibility[split] = []
self.min_possibility[split] = []
# Random initialize
for i, tree in enumerate(self.input_colors[split]):
self.possibility[split] += [np.random.rand(tree.data.shape[0]) * 1e-3]
self.min_possibility[split] += [float(np.min(self.possibility[split][-1]))]
def spatially_regular_gen():
# Generator loop
for i in range(num_per_epoch):
# Choose the cloud with the lowest probability
cloud_idx = int(np.argmin(self.min_possibility[split]))
# choose the point with the minimum of possibility in the cloud as query point
point_ind = np.argmin(self.possibility[split][cloud_idx])
# Get all points within the cloud from tree structure
points = np.array(self.input_trees[split][cloud_idx].data, copy=False)
# Center point of input region
center_point = points[point_ind, :].reshape(1, -1)
# Add noise to the center point
noise = np.random.normal(scale=cfg.noise_init / 10, size=center_point.shape)
pick_point = center_point + noise.astype(center_point.dtype)
# Check if the number of points in the selected cloud is less than the predefined num_points
if len(points) < cfg.num_points:
# Query all points within the cloud
queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=len(points))[1][0]
else:
# Query the predefined number of points
queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=cfg.num_points)[1][0]
# Shuffle index
queried_idx = DP.shuffle_idx(queried_idx)
# Get corresponding points and colors based on the index
queried_pc_xyz = points[queried_idx]
queried_pc_xyz = queried_pc_xyz - pick_point
queried_pc_colors = self.input_colors[split][cloud_idx][queried_idx]
queried_pc_labels = self.input_labels[split][cloud_idx][queried_idx]
# Update the possibility of the selected points
dists = np.sum(np.square((points[queried_idx] - pick_point).astype(np.float32)), axis=1)
delta = np.square(1 - dists / np.max(dists))
self.possibility[split][cloud_idx][queried_idx] += delta
self.min_possibility[split][cloud_idx] = float(np.min(self.possibility[split][cloud_idx]))
# up_sampled with replacement
if len(points) < cfg.num_points:
queried_pc_xyz, queried_pc_colors, queried_idx, queried_pc_labels = \
DP.data_aug(queried_pc_xyz, queried_pc_colors, queried_pc_labels, queried_idx, cfg.num_points)
if True:
yield (queried_pc_xyz.astype(np.float32),
queried_pc_colors.astype(np.float32),
queried_pc_labels,
queried_idx.astype(np.int32),
np.array([cloud_idx], dtype=np.int32))
gen_func = spatially_regular_gen
gen_types = (tf.float32, tf.float32, tf.int32, tf.int32, tf.int32)
gen_shapes = ([None, 3], [None, 3], [None], [None], [None])
return gen_func, gen_types, gen_shapes
@staticmethod
def get_tf_mapping2():
# Collect flat inputs
def tf_map(batch_xyz, batch_features, batch_labels, batch_pc_idx, batch_cloud_idx):
batch_features = tf.concat([batch_xyz, batch_features], axis=-1)
input_points = []
input_neighbors = []
input_pools = []
input_up_samples = []
for i in range(cfg.num_layers):
neighbour_idx = tf.py_func(DP.knn_search, [batch_xyz, batch_xyz, cfg.k_n], tf.int32)
sub_points = batch_xyz[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]
pool_i = neighbour_idx[:, :tf.shape(batch_xyz)[1] // cfg.sub_sampling_ratio[i], :]
up_i = tf.py_func(DP.knn_search, [sub_points, batch_xyz, 1], tf.int32)
input_points.append(batch_xyz)
input_neighbors.append(neighbour_idx)
input_pools.append(pool_i)
input_up_samples.append(up_i)
batch_xyz = sub_points
input_list = input_points + input_neighbors + input_pools + input_up_samples
input_list += [batch_features, batch_labels, batch_pc_idx, batch_cloud_idx]
return input_list
return tf_map
def init_input_pipeline(self):
print('Initiating input pipelines')
cfg.ignored_label_inds = [self.label_to_idx[ign_label] for ign_label in self.ignored_labels]
gen_function, gen_types, gen_shapes = self.get_batch_gen('training')
gen_function_val, _, _ = self.get_batch_gen('validation')
self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes)
self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes)
self.batch_train_data = self.train_data.batch(cfg.batch_size)
self.batch_val_data = self.val_data.batch(cfg.val_batch_size)
map_func = self.get_tf_mapping2()
self.batch_train_data = self.batch_train_data.map(map_func=map_func)
self.batch_val_data = self.batch_val_data.map(map_func=map_func)
self.batch_train_data = self.batch_train_data.prefetch(cfg.batch_size)
self.batch_val_data = self.batch_val_data.prefetch(cfg.val_batch_size)
iter = tf.data.Iterator.from_structure(self.batch_train_data.output_types, self.batch_train_data.output_shapes)
self.flat_inputs = iter.get_next()
self.train_init_op = iter.make_initializer(self.batch_train_data)
self.val_init_op = iter.make_initializer(self.batch_val_data)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='the number of GPUs to use [default: 0]')
parser.add_argument('--test_area', type=int, default=5, help='Which area to use for test, option: 1-6 [default: 5]')
parser.add_argument('--mode', type=str, default='train', help='options: train, test, vis')
parser.add_argument('--model_path', type=str, default='None', help='pretrained model path')
FLAGS = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = str(FLAGS.gpu)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
Mode = FLAGS.mode
test_area = FLAGS.test_area
dataset = S3DIS(test_area)
dataset.init_input_pipeline()
if Mode == 'train':
model = Network(dataset, cfg)
model.train(dataset)
elif Mode == 'test':
cfg.saving = False
model = Network(dataset, cfg)
if FLAGS.model_path is not 'None':
chosen_snap = FLAGS.model_path
else:
chosen_snapshot = -1
logs = np.sort([os.path.join('results', f) for f in os.listdir('results') if f.startswith('Log')])
chosen_folder = logs[-1]
snap_path = join(chosen_folder, 'snapshots')
snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']
chosen_step = np.sort(snap_steps)[-1]
chosen_snap = os.path.join(snap_path, 'snap-{:d}'.format(chosen_step))
tester = ModelTester(model, dataset, restore_snap=chosen_snap)
tester.test(model, dataset)
else:
##################
# Visualize data #
##################
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(dataset.train_init_op)
while True:
flat_inputs = sess.run(dataset.flat_inputs)
pc_xyz = flat_inputs[0]
sub_pc_xyz = flat_inputs[1]
labels = flat_inputs[21]
Plot.draw_pc_sem_ins(pc_xyz[0, :, :], labels[0, :])
Plot.draw_pc_sem_ins(sub_pc_xyz[0, :, :], labels[0, 0:np.shape(sub_pc_xyz)[1]])