-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdecoder.py
56 lines (50 loc) · 1.76 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torch.nn.functional as F
import torch.nn as nn
class Decoder(nn.Module):
def __init__(self,
input_dim,
output_dim,
activation,
last_activation,
bias,
num_layers=6,
hidden_dim=128,
):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.activation = self.fetch_activation(activation)
self.last_activation = self.fetch_activation(last_activation)
self.bias = bias
self.num_layers = num_layers
self.hidden_dim = hidden_dim
layers = []
for i in range(self.num_layers):
if i == 0:
layers.append(nn.Linear(self.input_dim, self.hidden_dim, bias=self.bias))
else:
layers.append(nn.Linear(self.hidden_dim, self.hidden_dim, bias=self.bias))
self.layers = nn.ModuleList(layers)
self.out_layer = nn.Linear(self.hidden_dim, self.output_dim, bias=self.bias)
def forward(self, x):
for i, l in enumerate(self.layers):
if i == 0:
h = self.activation(l(x))
else:
h = self.activation(l(h))
out = self.last_activation(self.out_layer(h))
# out = torch.sigmoid(out)
return out
def fetch_activation(self, activation):
if activation == "Relu":
return nn.ReLU()
elif activation == "Linear":
return nn.Identity()
elif activation == "Sigmoid":
return nn.Sigmoid()
elif activation == "Tanh":
return nn.Tanh()
else:
print(f"Unknown activation {activation}")
return nn.ReLU()