-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
84 lines (61 loc) · 2.48 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import torch.nn
from utils import AverageMeter, accuracy
from attack.pgd import pgd_whitebox
from attack.cw import cw_whitebox
from tqdm import tqdm
# standard accuracy
def eval_clean(dataloader, model, normalize):
top1 = AverageMeter()
model.eval()
for i, (input, target) in enumerate(tqdm(dataloader)):
input = input.cuda()
target = target.cuda()
# compute output
output_clean = model(normalize(input))
output_clean = output_clean.float()
# measure accuracy and record loss
prec1 = accuracy(output_clean.data, target)[0]
top1.update(prec1.item(), input.size(0))
# print('eval_accuracy {top1.avg:.3f}'.format(top1=top1))
return top1.avg
# robust accuracy
def eval_pgd(dataloader, model, normalize, epsilon, step, iters, restarts=1):
top1 = AverageMeter()
model.eval()
for i, (input, target) in enumerate(tqdm(dataloader)):
input = input.cuda()
target = target.cuda()
# generate Adversarial Examples (AEs)
X_pgd = pgd_whitebox(model, input, target, normalize=normalize,
epsilon=epsilon, alpha=step,
attack_iters=iters, restarts=restarts)
model.eval()
# compute output
output_ae = model(normalize(X_pgd))
output_ae = output_ae.float()
# measure accuracy and record loss
prec1 = accuracy(output_ae.data, target)[0]
top1.update(prec1.item(), input.size(0))
# print('eval_pgd20 {top1.avg:.3f}'.format(top1=top1))
return top1.avg
# robust accuracy
def eval_cw(dataloader, model, normalize, epsilon, step, iters, restarts=1):
top1 = AverageMeter()
model.eval()
for i, (input, target) in enumerate(tqdm(dataloader)):
input = input.cuda()
target = target.cuda()
# generate Adversarial Examples (AEs)
X_pgd = cw_whitebox(model, input, target, normalize=normalize,
epsilon=epsilon, alpha=step,
attack_iters=iters, restarts=restarts)
model.eval()
# compute output
output_ae = model(normalize(X_pgd))
output_ae = output_ae.float()
# measure accuracy and record loss
prec1 = accuracy(output_ae.data, target)[0]
top1.update(prec1.item(), input.size(0))
# print('eval_pgd20 {top1.avg:.3f}'.format(top1=top1))
return top1.avg