-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathShortest_Distance_Between_Nodes_Of_BST.cpp
153 lines (129 loc) · 4.77 KB
/
Shortest_Distance_Between_Nodes_Of_BST.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/*
Introduction
Given a Binary Search Tree ,Find the shortest distance between given two nodes , which exist in the tree
Argument/Return Type
Input of total no.of nodes is taken
Input of key values of nodes of tree are taken
*/
#include <bits/stdc++.h>
using namespace std;
//Define Node as structure
struct Node
{
int key;
Node* left;
Node* right;
};
// Function to create a node with 'value' as the data stored in it.
// Both the children of this new Node are initially null.
struct Node* newNode(int value)
{
Node* n = new Node;
n->key = value;
n->left = NULL;
n->right = NULL;
return n;
}
// Function to insert a node with given value to the root
struct Node* insert(struct Node* root,int element)
{
//If the root is NULL , create a node with given element and assign it to root
//else if the root itself is the node with given data , return
//else recursively insert it in one of the subtrees accordingly
if(root==NULL)
root = newNode(element);
else if(root->key < element)
root->right = insert(root->right,element);
else if(root->key > element)
root->left = insert(root->left,element);
return root;
}
//Function to find least common ancestor
struct Node* leastCommonAncestor(struct Node* root,int node_1_value,int node_2_value)
{
//If both the given value nodes lie in left subtree of the root
//Find LCA in left subtree recursively
if(node_1_value<root->key && node_2_value<root->key)
return leastCommonAncestor(root->left,node_1_value,node_2_value);
//Else If both the given value nodes lie in right subtree of the root
//Find LCA in right subtree recursively
if(node_1_value>root->key && node_2_value>root->key)
return leastCommonAncestor(root->right,node_1_value,node_2_value);
//Else it means that one node is in left subtree and one node is in right sub tree
//return root
return root;
}
//Utility function to find distance between a node and its ancestor
int ShortestDistanceUtill(struct Node* root,int value)
{
//If root itself is the node with given value return 0
//else recursively calculate distance between corresponding subtree by adding a edge (+1)
if (root->key == value)
return 0;
else if (root->key > value)
return 1 + ShortestDistanceUtill(root->left, value);
return 1 + ShortestDistanceUtill(root->right, value);
}
//Function to find shortest distance of nodes with given values in the given tree
int ShortestDistance(struct Node* root,int node_1_value,int node_2_value)
{
//Finf out the least common ancestor of given two nodes
struct Node* LCA;
LCA = leastCommonAncestor(root,node_1_value,node_2_value);
//If least common ancestor is not found , return -1
if(LCA==NULL)
return -1;
//Now calculate distance between given nodes by the formula below
return ShortestDistanceUtill(LCA,node_1_value)+ShortestDistanceUtill(LCA,node_2_value);
}
// Driver code
int main()
{
int n;
cout<<"Enter total no.of nodes of the input Tree ( including NULL nodes ) : ";
cin>>n;
//create a null node and initialise it as a NULL node
struct Node* root;
root=NULL;
cout<<"Enter value of each node of the Tree , with head as the first value ( if a node is NULL , enter -1 ) with spaces"<<endl;
for(int i=0;i<n;i++)
{
int data;
cin>>data;
//take input of data of each node and insert it in the root
root = insert(root,data);
}
cout<<"Enter two node values of the given Tree : ";
int node_1_value,node_2_value;
cin>>node_1_value>>node_2_value;
//Call the function and print the result
cout<<"Hence the shortest distance between given two nodes is : "<<ShortestDistance(root,node_1_value,node_2_value);
return 0;
}
/*
Input:
0 <= node->key < 1000000000
While entering node values of the tree ,
value of the head of the tree should be enetered first
Sample Test Case 1
Input Binary Tree 1:
11
/ \
2 20
/ \ / \
1 5 NULL 25
Input Format :
Example :
Enter total no.of nodes of the input Tree ( including NULL nodes ) : 6
Enter value of each node of the Tree , with head as the first value ( if a node is NULL , enter -1 ) with spaces
11 2 20 1 5 25
Enter two node values of the given Tree : 5 25
Output Format :
Example : ( Output to the above input example )
Hence the shortest distance between given two nodes is : 4
Time/Space Complexity
Time Complexity : O(n)
Where n is the no.of nodes ofthe tree
Space Complexity : O(h)
Where h is the height of the tree
*/