-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathheap_implementation.cpp
269 lines (254 loc) · 7.34 KB
/
heap_implementation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
Heap is a binary tree which satisfies two properties:
1.Structure Property: All levels have maximum number of nodes except possibly the last level. In the last level, all nodes are to the left.
2.Heap Order Property: (max heap)Key in any node N is greater than or equal to the keys in both children of N.
(min heap)Key in any node N is less than or equal to the keys in both children of N.
Representation of heap tree:
Sequential representation is good as heap is a complete binary tree. (No wasted array locations)
We maintain the heap size in a variable.
Left child of a node at i is 2i+1 (When using array from index 0)
Right child of a node at i is 2i+2
Parent is (i-1)/2
In the following code both max heap and min heap are implemented.
*/
#include<bits/stdc++.h>
using namespace std;
class Maxheap {
//Pointer to the start of array
int * heap;
//For the current size of heap
int size;
//The maximum number of nodes it can have
int capacity;
public:
Maxheap(int cap): capacity {
cap
}, size {
0
} {
heap = new int[capacity];
}
//Returns the index of left child
int left_child(int parent) {
int index_of_left_child = 2 * parent + 1;
if (index_of_left_child <= size) {
return index_of_left_child;
} else {
return -1;
}
}
//Returns the index of right child
int right_child(int parent) {
int index_of_right_child = 2 * parent + 2;
if (index_of_right_child <= size) {
return index_of_right_child;
} else {
return -1;
}
}
//Returns the index of parent
int parent(int child) {
return (child - 1) / 2;
}
//Method to insert an item into the heap
void insert_value(int data) {
if (size == capacity) {
cout << "Overflow, heap at max capacity" << endl;
return;
}
size++;
int index = size - 1;
heap[index] = data;
//Restoring the max_heap property
//The new node added must be taken to its correct position based on the heap order property for max heap
//Move the node up the tree until its less or equal to its parent or it becomes the root node
while (index > 0 && heap[index] > heap[parent(index)]) {
swap(heap[index], heap[parent(index)]);
index = parent(index);
}
}
//Method to delete an item from the heap
//NOTE: That the element is always deleted from the top of a heap as it gives the maximum element
int delete_value() {
if (size == 0) {
cout << "Underflow, heap is already empty" << endl;
return -1;
}
//Storing the value of the item to be removed
int max_value = heap[0];
//Overwriting with the last value
heap[0] = heap[size - 1];
//Decreasing size
size--;
int index = 0;
int l, r, largest;
//Taking the overwritten value to its correct position
//Move the new node down the tree until it is greater than both of its children
while (index < size) {
largest = index;
l = left_child(index);
r = right_child(index);
//Check if the left child is larger than it
if (l != -1 && heap[l] > heap[index]) {
largest = l;
}
//Check if the right child is also large
if (r != -1 && heap[largest] < heap[r]) {
largest = r;
}
//Condition that returns true if the node is larger or equal to both its children
if (largest == index) break;
//Move the largest(i.e from left and right child) up
swap(heap[index], heap[largest]);
index = largest;
}
//Returning the value of deleted item
return max_value;
}
//Level order traversal of heap
void print() {
for (int i = 0; i < size; i++) {
cout << heap[i] << " ";
}
cout << endl;
}
};
class Minheap {
int * heap, size, capacity;
public:
Minheap(int cap): capacity {
cap
}, size {
0
} {
heap = new int[capacity];
}
int left_child(int parent) {
int index_of_left_child = 2 * parent + 1;
if (index_of_left_child <= size) {
return index_of_left_child;
} else {
return -1;
}
}
int right_child(int parent) {
int index_of_right_child = 2 * parent + 2;
if (index_of_right_child <= size) {
return index_of_right_child;
} else {
return -1;
}
}
int parent(int child) {
return (child - 1) / 2;
}
void insert_value(int data) {
if (size == capacity) {
cout << "Overflow, heap at max capacity" << endl;
return;
}
size++;
int index = size - 1;
heap[index] = data;
//Restoring the min_heap property
//Move the node up the tree until it is larger than or equal to its parent node
while (index > 0 && heap[index] < heap[parent(index)]) {
swap(heap[index], heap[parent(index)]);
index = parent(index);
}
}
//Method to delete an item from the heap
//NOTE: That the element is always deleted from the top of a heap as it gives the minimum element
int delete_value() {
if (size == 0) {
cout << "Underflow, heap is already empty" << endl;
return -1;
}
//Storing the value of the item to be removed
int min_value = heap[0];
//Overwriting with the last value
heap[0] = heap[size - 1];
//Decreasing size
size--;
int index = 0;
int l, r, smallest;
//Taking the overwritten value to its correct position
//Move the node down the tree until it is less than or equal to both its children
while (index < size) {
smallest = index;
l = left_child(index);
r = right_child(index);
if (l != -1 && heap[l] < heap[index]) {
smallest = l;
}
if (r != -1 && heap[smallest] > heap[r]) {
smallest = r;
}
if (smallest == index) break;
swap(heap[index], heap[smallest]);
index = smallest;
}
//Returning the value of deleted item
return min_value;
}
void print() {
for (int i = 0; i < size; i++) {
cout << heap[i] << " ";
}
cout << endl;
}
};
int main() {
int n;
cout << "Enter the capacity of your heap ";
cin >> n;
int choice;
cout << "Input 1 if you want to use max heap and 2 if min heap: ";
cin >> choice;
if (choice == 1) {
Maxheap my_heap(n);
int a;
cout << "Enter the values to be added in heap: ";
for (int i = 0; i < n; i++) {
cin >> a;
my_heap.insert_value(a);
}
my_heap.print();
cout << "Enter 1 to delete from the heap and 2 to exit: ";
cin >> choice;
if (choice == 1) {
my_heap.delete_value();
cout << "New heap: ";
my_heap.print();
}
} else {
Minheap my_heap(n);
int a;
cout << "Enter the values to be added in heap: ";
for (int i = 0; i < n; i++) {
cin >> a;
my_heap.insert_value(a);
}
my_heap.print();
cout << "Enter 1 to delete from the heap and 2 to exit: ";
cin >> choice;
if (choice == 1) {
my_heap.delete_value();
cout << "New heap: ";
my_heap.print();
}
}
return 0;
}
/*
I/O:
Enter the capacity of your heap 6
Input 1 if you want to use max heap and 2 if min heap: 2
Enter the values to be added in heap: 10 15 3 6 1 23
1 3 10 15 6 23
Enter 1 to delete from the heap and 2 to exit: 1
New heap: 3 6 10 15 23
Insertion time Compexity: O(logn) -> Since the height of a binary tree logn we will traverse max logn nodes.
Deletion time Complexity: O(logn) -> Same as insertion
Space Complexity for both: O(1)
*/