-
Notifications
You must be signed in to change notification settings - Fork 0
/
26 longest palindrome subsequence.cpp
41 lines (33 loc) · 1.2 KB
/
26 longest palindrome subsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
int lcs(int n, int m, string A, string B){
// here n is the length of string A and m is length for string B
// make table size depend on change input/variable
int t[n+1][m+1];
//intializing first row and first col based on base condition of recusive solution
for(int i=0; i<n+1; i++){
for(int j=0;j<m+1; j++){
if(i==0 || j==0){
t[i][j] = 0;
}
}
}
// filling other t[][] box base on choice diagram
for(int i=1; i<n+1; i++){
for(int j=1; j<m+1; j++){
if(A[i-1]==B[j-1]){
t[i][j] = 1 + t[i-1][j-1];
}
else {
t[i][j] = max( t[i][j-1],t[i-1][j] );
}
}
}
return t[n][m];
}
int longestPalinSubseq(string A) {
// LPS of string A = LCS of (string A , reverse of string A)
// so reverse string A and store in a string B
string B = A;
reverse(B.begin(),B.end() );
int length_of_LPS = lcs(A.length(),B.length(),A,B);
return length_of_LPS;
}