forked from EleutherAI/lm-evaluation-harness
-
Notifications
You must be signed in to change notification settings - Fork 1
/
launch_local.py
125 lines (97 loc) · 3.26 KB
/
launch_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import torch
import click
from typing import List, Optional
from lm_eval.__main__ import cli_evaluate
from datetime import datetime
import os
import importlib.util
from tqdm import tqdm
MAX_WORKERS_PER_GPU = 1
DEVICE = "cuda"
torch.random.manual_seed(0)
def execute_config(
model: str,
task: str,
batch_size: int,
limit: int,
output_dir: str,
num_fewshot: int,
):
# Save the original standard output
import subprocess
output_dir = os.path.join(output_dir, model, task)
# pass flags to cli_evaluate() to override the defaults in argparse
args = [
"lm_eval",
"--model", "lm_eval_model",
"--model_args", f" checkpoint_name={model}",
"--task", task,
"--device", "cuda:0",
"--batch_size", str(batch_size),
"--output_path", output_dir,
"--num_fewshot", str(num_fewshot),
"--log_samples",
"--write_out",
]
if limit is not None:
args.extend(["--limit", str(limit)])
subprocess.run(args)
@click.command()
@click.option("-m", "--model", type=str, multiple=True)
@click.option("-t", "--task", type=str, multiple=True)
@click.option("-p", "--parallelize", is_flag=True)
@click.option("--gpus", default=None, type=str)
@click.option("--batch-size", default=8, type=int)
@click.option("--limit", default=None, type=int)
@click.option("--num_fewshot", default=0, type=int)
def main(
model: List[str],
task: List[str],
batch_size: int,
limit: Optional[int],
parallelize: bool,
gpus: str,
num_fewshot: int = 0,
):
if limit < 0: limit = None
if gpus is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = gpus
# Load the given Python file as a module
configs = [
{"model": m, "task": t} for m in model for t in task
]
use_ray = parallelize and len(configs) > 0
if use_ray:
import ray
# ray was killing workers due to OOM, but it didn't seem to be necessary
os.environ["RAY_memory_monitor_refresh_ms"] = "0"
ray.init(ignore_reinit_error=True, log_to_driver=True)
print(f"Running sweep with {len(configs)} configs")
output_dir = f"outputs/{datetime.now().strftime('%y-%m-%d_%H-%M')}"
# Run each script in parallel using Ray
if not use_ray:
for config in configs:
execute_config(
**config,
batch_size=batch_size,
limit=limit,
output_dir=output_dir,
num_fewshot=num_fewshot,
)
else:
completed = 0
total = len(configs)
print(f"Completed: {completed} ({completed / total:0.1%}) | Total: {total}")
remote = ray.remote(num_gpus=(1 // MAX_WORKERS_PER_GPU))(execute_config)
futures = [remote.remote(
**config, batch_size=batch_size, limit=limit, output_dir=output_dir,
num_fewshot=num_fewshot
) for config in configs]
while futures:
complete, futures = ray.wait(futures)
completed += len(complete)
print(f"Completed: {completed} ({completed / total:0.1%}) | Total: {total}")
ray.shutdown()
if __name__ == "__main__":
main()