-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_eval.py
638 lines (493 loc) · 31.5 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
from torch.autograd import Variable
import torch.optim as optim
import time
import xlwt
from datetime import datetime
from pathlib import Path
from tensorboardX import SummaryWriter
import torch
import os
import numpy
from src.dataset.data_loader import GMDataset, get_dataloader
from models.GMN.displacement_layer import Displacement
from src.loss_func import *
from src.evaluation_metric import matching_accuracy
from src.parallel import DataParallel
from src.utils.model_sl import load_model, save_model
from eval import eval_model
from src.utils.data_to_cuda import data_to_cuda
from src.lap_solvers.hungarian import hungarian
from src.utils.config import cfg
import my_ops
is_cuda = torch.cuda.is_available()
def to_var(x):
if is_cuda:
x = x.cuda()
return x
def build_softmatching_loss(matching_permutation_matrix,pos_weight):
dim, m, n= matching_permutation_matrix.size()
matrix_residuals = torch.zeros_like(matching_permutation_matrix,dtype=torch.float)
if cfg.MATCHING_TYPE == 'Balanced':
col_sums = torch.sum(matching_permutation_matrix, dim=1)
col_residuals = torch.abs(torch.ones_like(col_sums) - col_sums) / n
for d in range(dim):
for r in range(m):
matrix_residuals[d][r] = matrix_residuals[d][r] + col_residuals[d]
return pos_weight* matrix_residuals
elif cfg.MATCHING_TYPE == 'Unbalanced':
col_sums = torch.sum(matching_permutation_matrix, dim=1)
col_residuals = col_sums - torch.ones_like(col_sums)
col_residuals = torch.clamp(col_residuals, min=0.0) / n
for d in range(dim):
for r in range(m):
matrix_residuals[d][r] = matrix_residuals[d][r] + col_residuals[d]
return pos_weight* matrix_residuals
def build_wbce_loss(matching_permutation_matrix, matching_gt_tiled, pos_weight):
loss = torch.nn.BCELoss(reduction='none')
loss_output = loss(to_var(matching_permutation_matrix.float()), to_var(matching_gt_tiled.float()))
loss_output += pos_weight * loss_output * to_var(matching_gt_tiled.float())
return loss_output
def build_2step_cycles(focal_graph_pair, graph_indices, pred_perm_mats):
ref_source_graph = focal_graph_pair[0]
ref_target_graph = focal_graph_pair[1]
graph_indices_transpose = [tuple(numpy.flip(ind)) for ind in graph_indices]
pred_perm_mat_transpose = [torch.transpose(pred_perm_mat,1,2) for pred_perm_mat in pred_perm_mats]
graph_cycleparts = [((g_ind_tup_a, g_ind_tup_b), torch.matmul(pred_perm_mat_a,pred_perm_mat_b)) for g_ind_tup_a,pred_perm_mat_a in zip(graph_indices,pred_perm_mats) for g_ind_tup_b,pred_perm_mat_b in zip(graph_indices,pred_perm_mats) if g_ind_tup_a[0] == ref_source_graph and g_ind_tup_b[1] == ref_target_graph and g_ind_tup_a[1] == g_ind_tup_b[0] and g_ind_tup_a[1] != ref_target_graph]
graph_cycleparts_t_b = [((g_ind_tup_a, g_ind_tup_b),torch.matmul(pred_perm_mat_a,pred_perm_mat_b)) for g_ind_tup_a,pred_perm_mat_a in zip(graph_indices, pred_perm_mats) for g_ind_tup_b,pred_perm_mat_b in zip(graph_indices_transpose,pred_perm_mat_transpose) if g_ind_tup_a[0] == ref_source_graph and g_ind_tup_b[1] == ref_target_graph and g_ind_tup_a[1] == g_ind_tup_b[0] and g_ind_tup_a[1] != ref_target_graph]
graph_cycleparts_t_a = [((g_ind_tup_a, g_ind_tup_b),torch.matmul(pred_perm_mat_a,pred_perm_mat_b)) for g_ind_tup_a, pred_perm_mat_a in zip(graph_indices_transpose,pred_perm_mat_transpose) for g_ind_tup_b, pred_perm_mat_b in zip(graph_indices,pred_perm_mats) if g_ind_tup_a[0] == ref_source_graph and g_ind_tup_b[1] == ref_target_graph and g_ind_tup_a[1] == g_ind_tup_b[0] and g_ind_tup_a[1] != ref_target_graph]
graph_cycleparts_indices_tuples = [t[0] for t in graph_cycleparts] + [t[0] for t in graph_cycleparts_t_b] + [t[0] for t in graph_cycleparts_t_a]
graph_cycleparts_preds = [t[1] for t in graph_cycleparts] + [t[1] for t in graph_cycleparts_t_b] + [t[1] for t in graph_cycleparts_t_a]
return graph_cycleparts_indices_tuples, graph_cycleparts_preds
def build_cycle_consistency_loss(focal_perm_mat_pred, graph_cycleparts_preds, lagrange_multiplier):
all_cycles_loss = to_var(torch.zeros(focal_perm_mat_pred.size()))
for cyc in graph_cycleparts_preds:
cycle_loss_c = lagrange_multiplier*torch.where(focal_perm_mat_pred < cyc, cyc, to_var(torch.zeros(1)))
all_cycles_loss += cycle_loss_c
return all_cycles_loss
def direction_encoder_gradient_calcuate_w_illust(log_alpha_w_noise, log_alpha_w_noise_permutation_matrix, train_wbce_loss, samples_per_num_train, n1_gt, n2_gt):
with torch.no_grad():
log_alpha_w_noise_w_e_theta = log_alpha_w_noise.clone()
log_alpha_minus_noise_w_e_theta = log_alpha_w_noise.clone() ###two sided
reattempt = True
while reattempt:
# associate the perturbation to its correlated position in log_alpha_w_noise according to the ground truth permutation
log_alpha_w_noise_w_e_theta += cfg.loss_epsilon * train_wbce_loss
log_alpha_minus_noise_w_e_theta -= cfg.loss_epsilon * train_wbce_loss ###two sided
# Solve a matching problem for a batch of matrices.
hungarian_matching_permutation_matrix_with_epsilon_theta = hungarian(log_alpha_w_noise_w_e_theta, n1_gt, n2_gt)
hungarian_matching_permutation_matrix_minus_epsilon_theta = hungarian(log_alpha_minus_noise_w_e_theta, n1_gt, n2_gt) ###two sided
#encoder_direction_matrix = (-1)*hungarian_matching_permutation_matrix_with_epsilon_theta + log_alpha_w_noise_permutation_matrix
encoder_direction_matrix = (-1)*hungarian_matching_permutation_matrix_with_epsilon_theta + hungarian_matching_permutation_matrix_minus_epsilon_theta ###two sided
encoder_direction_matrix = encoder_direction_matrix.type(torch.float)
batch_size = log_alpha_w_noise.size()[0]
if torch.all(torch.eq(encoder_direction_matrix, to_var(torch.zeros([batch_size, encoder_direction_matrix.size()[1], encoder_direction_matrix.size()[2]])))) and torch.sum(train_wbce_loss) > 0.:
cfg.loss_epsilon *= 1.1
print("*************************zero gradients loss positive")
print("*********increasing epsilon by 10%")
reattempt = False
else:
reattempt = False
return encoder_direction_matrix
def train_eval_model(model,
criterion,
optimizer,
dataloader,
tfboard_writer,
num_epochs=25,
start_epoch=0,
xls_wb=None):
print('Start training...')
since = time.time()
dataset_size = len(dataloader['train'].dataset)
displacement = Displacement()
device = next(model.parameters()).device
print('model on device: {}'.format(device))
alphas = torch.tensor(cfg.EVAL.PCK_ALPHAS, dtype=torch.float32, device=device) # for evaluation
checkpoint_path = Path(cfg.OUTPUT_PATH) / ('params'+'_'+str(cfg.MATCHING_TYPE) + '_' + str(cfg.source_partial_kpt_len)+'_'+str(cfg.target_partial_kpt_len)+'_GConvNorma_'+str(cfg.crossgraph_s_normalization)+str(cfg.OPTIMIZATION_METHOD)+'_sample_'+str(cfg.samples_per_num_train)+now_time+'_'+str(cfg.PROBLEM.TYPE))
#checkpoint_path = Path(cfg.OUTPUT_PATH) / 'params'
if not checkpoint_path.exists():
checkpoint_path.mkdir(parents=True)
model_path, optim_path = '',''
if start_epoch > 0:
model_path = str(checkpoint_path / 'params_{:04}.pt'.format(start_epoch))
optim_path = str(checkpoint_path / 'optim_{:04}.pt'.format(start_epoch))
if len(cfg.PRETRAINED_PATH) > 0:
model_path = cfg.PRETRAINED_PATH
if len(model_path) > 0:
print('Loading model parameters from {}'.format(model_path))
load_model(model, model_path, strict=False)
if len(optim_path) > 0:
print('Loading optimizer state from {}'.format(optim_path))
optimizer.load_state_dict(torch.load(optim_path))
scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
milestones=cfg.TRAIN.LR_STEP,
gamma=cfg.TRAIN.LR_DECAY,
last_epoch=cfg.TRAIN.START_EPOCH - 1)
for epoch in range(start_epoch, num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
#print("trying sinkhorn anyhow!")
print("sigma_noise= ", str(cfg.sigma_norm))
if cfg.PROBLEM.TYPE in ['MGM']:
if cfg.OPTIMIZATION_METHOD == 'Direct':
if cfg.penalty_method_on_cycle:
cfg.lagrange_multiplier += cfg.penalty_epoch_increase
print("lagrange_multiplier= ", str(cfg.lagrange_multiplier))
model.train() # Set model to training mode
print('lr = ' + ', '.join(['{:.2e}'.format(x['lr']) for x in optimizer.param_groups]))
epoch_loss = 0.0
running_loss = 0.0
running_since = time.time()
iter_num = 0
# Iterate over data.
for inputs in dataloader['train']:
if model.module.device != torch.device('cpu'):
inputs = data_to_cuda(inputs)
iter_num = iter_num + 1
# zero the parameter gradients
optimizer.zero_grad()
with torch.set_grad_enabled(True):
# forward
outputs = model(inputs)
if cfg.PROBLEM.TYPE == '2GM':
assert 'ds_mat' in outputs
assert 'perm_mat' in outputs
assert 'gt_perm_mat' in outputs
# compute loss
if cfg.TRAIN.LOSS_FUNC == 'offset':
d_gt, grad_mask = displacement(outputs['gt_perm_mat'], *outputs['Ps'], outputs['ns'][0])
d_pred, _ = displacement(outputs['ds_mat'], *outputs['Ps'], outputs['ns'][0])
loss = criterion(d_pred, d_gt, grad_mask)
elif cfg.TRAIN.LOSS_FUNC in ['perm', 'ce', 'hung']:
if cfg.OPTIMIZATION_METHOD =='Sinkhorn':
if cfg.train_noise_factor and outputs['ds_mat'].requires_grad:
if cfg.samples_per_num_train > 1:
outputs['gt_perm_mat'] = outputs['gt_perm_mat'].repeat(cfg.samples_per_num_train, 1, 1)
outputs['ns'][0] = outputs['ns'][0].repeat(cfg.samples_per_num_train)
outputs['ns'][1] = outputs['ns'][1].repeat(cfg.samples_per_num_train)
loss = criterion(outputs['ds_mat'], outputs['gt_perm_mat'], *outputs['ns'])
if cfg.OPTIMIZATION_METHOD =='superglue':
loss = criterion(outputs['ds_mat'], outputs['gt_perm_mat'], *outputs['ns'])
elif cfg.OPTIMIZATION_METHOD == 'Direct': # direct optimization
pos_weight = torch.tensor(cfg.pos_weight)
if cfg.train_noise_factor:
sigma_tmp = to_var(torch.ones([outputs['ds_mat'].size()[0], 1], dtype=torch.float)) / cfg.sigma_norm
outputs['ds_mat'], _ = my_ops.my_phi_and_gamma_sigma_unbalanced(outputs['ds_mat'], cfg.samples_per_num_train,
cfg.train_noise_factor,
sigma_tmp)
# Solve a matching problem for a batch of matrices, if noise is added.
# tiled variables, to compare to many permutations
if cfg.samples_per_num_train > 1:
outputs['gt_perm_mat'] = outputs['gt_perm_mat'].repeat(cfg.samples_per_num_train, 1, 1)
outputs['ns'][0] = outputs['ns'][0].repeat(cfg.samples_per_num_train)
outputs['ns'][1] = outputs['ns'][1].repeat(cfg.samples_per_num_train)
outputs['perm_mat'] = hungarian(outputs['ds_mat'], outputs['ns'][0], outputs['ns'][1])
# calculate weighted bce loss without reduction
train_wbce_loss = build_wbce_loss(outputs['perm_mat'], outputs['gt_perm_mat'], pos_weight)
encoder_gradient_direction_matrix = direction_encoder_gradient_calcuate_w_illust(
outputs['ds_mat'], outputs['perm_mat'], train_wbce_loss, 1, outputs['ns'][0], outputs['ns'][1])
# calculate loss to optimize encoder
encoder_gradient_direction_matrix = (1. / 1.) * encoder_gradient_direction_matrix
loss = torch.sum(outputs['ds_mat'] * to_var(encoder_gradient_direction_matrix))
elif cfg.TRAIN.LOSS_FUNC == 'hamming':
loss = criterion(outputs['perm_mat'], outputs['gt_perm_mat'])
elif cfg.TRAIN.LOSS_FUNC == 'plain':
loss = torch.sum(outputs['loss'])
else:
raise ValueError('Unsupported loss function {} for problem type {}'.format(cfg.TRAIN.LOSS_FUNC, cfg.PROBLEM.TYPE))
# compute accuracy
acc, _, __ = matching_accuracy(outputs['perm_mat'], outputs['gt_perm_mat'], outputs['ns'][0])
elif cfg.PROBLEM.TYPE in ['MGM', 'MGMC']:
if not cfg.OPTIMIZATION_METHOD == "BBGM":
assert 'ds_mat_list' in outputs
assert 'graph_indices' in outputs
assert 'perm_mat_list' in outputs
assert 'gt_perm_mat_list' in outputs
# compute loss & accuracy
if cfg.TRAIN.LOSS_FUNC in ['perm', 'ce' 'hung']:
if cfg.OPTIMIZATION_METHOD == 'Sinkhorn':
loss = torch.zeros(1, device=model.module.device)
ns = outputs['ns']
for s_pred, x_gt, (idx_src, idx_tgt) in \
zip(outputs['ds_mat_list'], outputs['gt_perm_mat_list'], outputs['graph_indices']):
l = criterion(s_pred, x_gt, ns[idx_src], ns[idx_tgt])
loss += l
loss /= len(outputs['ds_mat_list'])
elif cfg.OPTIMIZATION_METHOD == 'Direct': # direct optimization
pos_weight = torch.tensor(cfg.pos_weight)
loss = torch.zeros(1, device=model.module.device)
ns = outputs['ns'] #number of sampled nodes, each is (#keypoints at source graph, #keypoints at target graph)
graph_cycleparts_preds_all = []
for s_pred, perm_mat_pred, x_gt, (idx_src, idx_tgt) in \
zip(outputs['ds_mat_list'], outputs['perm_mat_list'], outputs['gt_perm_mat_list'], outputs['graph_indices']):
if cfg.train_noise_factor:
sigma_tmp = to_var(torch.ones([s_pred.size()[0], 1],dtype=torch.float)) / cfg.sigma_norm
s_pred, _ = my_ops.my_phi_and_gamma_sigma_unbalanced(s_pred, cfg.samples_per_num_train, cfg.train_noise_factor, sigma_tmp)
if cfg.samples_per_num_train > 1:
x_gt = x_gt.repeat(cfg.samples_per_num_train, 1, 1)
ns_src = ns[idx_src].repeat(cfg.samples_per_num_train)
ns_trg = ns[idx_tgt].repeat(cfg.samples_per_num_train)
else:
ns_src = ns[idx_src][0]
ns_trg = ns[idx_tgt][0]
perm_mat = hungarian(s_pred, ns_src, ns_trg)
#no noise situation
else:
ns_src = ns[idx_src]
ns_trg = ns[idx_tgt]
perm_mat = perm_mat_pred
# calculate weighted bce loss without reduction
train_wbce_loss = build_wbce_loss(perm_mat, x_gt, pos_weight)
# calculate 2step cycle consistency loss without reduction
graph_cycleparts_tup_indices, graph_cycleparts_preds = build_2step_cycles((idx_src, idx_tgt), outputs['graph_indices'], outputs['perm_mat_list'])
for p in range(len(graph_cycleparts_preds)):
graph_cycleparts_preds[p] = graph_cycleparts_preds[p].repeat(cfg.samples_per_num_train, 1, 1)
graph_cycleparts_preds_all.append(graph_cycleparts_preds[0])
cycle_consistency_loss = build_cycle_consistency_loss(perm_mat, graph_cycleparts_preds, cfg.lagrange_multiplier)
if cfg.PROBLEM.UNSUPERVISED:
total_loss = cycle_consistency_loss
else:
total_loss = cycle_consistency_loss + train_wbce_loss
encoder_gradient_direction_matrix = direction_encoder_gradient_calcuate_w_illust(s_pred, perm_mat, total_loss, 1, ns_src, ns_trg)
# calculate loss to optimize encoder
encoder_gradient_direction_matrix = (1. / 1.) * encoder_gradient_direction_matrix
l = torch.sum(s_pred * to_var(encoder_gradient_direction_matrix))
loss += l
loss /= len(outputs['ds_mat_list'])
'''
elif cfg.OPTIMIZATION_METHOD == 'Direct' and cfg.MATCHING_TYPE =='Balanced': # direct optimization
pos_weight = torch.tensor(cfg.pos_weight)
loss = torch.zeros(1, device=model.module.device)
ns = outputs['ns']
for s_pred, x_gt, (idx_src, idx_tgt) in \
zip(outputs['ds_mat_list'], outputs['gt_perm_mat_list'], outputs['graph_indices']):
if cfg.train_noise_factor:
sigma_tmp = to_var(torch.ones([s_pred.size()[0], 1],dtype=torch.float)) / cfg.sigma_norm
s_pred, _ = my_ops.my_phi_and_gamma_sigma_unbalanced(s_pred, cfg.samples_per_num_train, cfg.train_noise_factor, sigma_tmp)
if cfg.samples_per_num_train > 1:
x_gt = x_gt.repeat(cfg.samples_per_num_train, 1, 1)
ns_src = ns[idx_src].repeat(cfg.samples_per_num_train)
ns_trg = ns[idx_tgt].repeat(cfg.samples_per_num_train)
else:
ns_src = ns[idx_src]
ns_trg = ns[idx_tgt]
perm_mat = hungarian(s_pred, ns_src, ns_trg)
# calculate weighted bce loss without reduction
train_wbce_loss = build_wbce_loss(perm_mat, x_gt, pos_weight)
encoder_gradient_direction_matrix = direction_encoder_gradient_calcuate_w_illust(
s_pred, perm_mat, train_wbce_loss, 1, ns_src, ns_trg)
# calculate loss to optimize encoder
encoder_gradient_direction_matrix = (1. / 1.) * encoder_gradient_direction_matrix
l = torch.sum(s_pred * to_var(encoder_gradient_direction_matrix))
loss += l
loss /= len(outputs['ds_mat_list'])
'''
elif cfg.TRAIN.LOSS_FUNC == 'plain':
loss = torch.sum(outputs['loss'])
elif cfg.TRAIN.LOSS_FUNC == 'hamming':
ns = outputs['ns']
loss_i = 0
for i in range(len(outputs['perm_mat_list'])):
loss_i += criterion(outputs['perm_mat_list'][i], outputs['gt_perm_mat_list'][i])
loss = loss_i/ len(outputs['perm_mat_list'])
else:
raise ValueError('Unsupported loss function {} for problem type {}'.format(cfg.TRAIN.LOSS_FUNC, cfg.PROBLEM.TYPE))
# compute accuracy
acc = torch.zeros(1, device=model.module.device)
for x_pred, x_gt, (idx_src, idx_tgt) in \
zip(outputs['perm_mat_list'], outputs['gt_perm_mat_list'], outputs['graph_indices']):
a, _, __ = matching_accuracy(x_pred, x_gt, ns[idx_src])
if cfg.PROBLEM.TYPE in ['MGM', 'MGMC']:
acc += torch.mean(a)
else:
acc += torch.sum(a)
acc /= len(outputs['perm_mat_list'])
# compute cycle-consistency
if cfg.OPTIMIZATION_METHOD == "Direct":
if cfg.PROBLEM.TYPE in ['MGM', 'MGMC']:
cyc_const = torch.zeros(1, device=model.module.device)
for x_pred, x_2stepcycle, (idx_src, idx_tgt) in \
zip(outputs['perm_mat_list'], graph_cycleparts_preds_all, outputs['graph_indices']):
c, _, __ = matching_accuracy(x_pred, x_2stepcycle, ns[idx_src])
cyc_const += torch.mean(c)
cyc_const /= len(outputs['perm_mat_list'])
else:
raise ValueError('Unknown problem type {}'.format(cfg.PROBLEM.TYPE))
# backward + optimize
if cfg.FP16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
batch_num = inputs['batch_size']
# tfboard writer
loss_dict = dict()
loss_dict['loss'] = loss.item()
tfboard_writer.add_scalars('loss', loss_dict, epoch * cfg.TRAIN.EPOCH_ITERS + iter_num)
accdict = dict()
accdict['matching accuracy'] = torch.mean(acc)
tfboard_writer.add_scalars(
'training accuracy',
accdict,
epoch * cfg.TRAIN.EPOCH_ITERS + iter_num
)
if cfg.OPTIMIZATION_METHOD == "Direct":
if cfg.PROBLEM.TYPE in ['MGM', 'MGMC']:
cycle_consistency_dict = dict()
cycle_consistency_dict['cycle_consistency accuracy'] = torch.mean(cyc_const)
tfboard_writer.add_scalars(
'training cycle_consistency accuracy',
cycle_consistency_dict,
epoch * cfg.TRAIN.EPOCH_ITERS + iter_num
)
# statistics
running_loss += loss.item() * batch_num
epoch_loss += loss.item() * batch_num
if iter_num % cfg.STATISTIC_STEP == 0:
running_speed = cfg.STATISTIC_STEP * batch_num / (time.time() - running_since)
print('Epoch {:<4} Iteration {:<4} {:>4.2f}sample/s Loss={:<8.4f}'
.format(epoch, iter_num, running_speed, running_loss / cfg.STATISTIC_STEP / batch_num))
tfboard_writer.add_scalars(
'speed',
{'speed': running_speed},
epoch * cfg.TRAIN.EPOCH_ITERS + iter_num
)
tfboard_writer.add_scalars(
'learning rate',
{'lr_{}'.format(i): x['lr'] for i, x in enumerate(optimizer.param_groups)},
epoch * cfg.TRAIN.EPOCH_ITERS + iter_num
)
running_loss = 0.0
running_since = time.time()
epoch_loss = epoch_loss / dataset_size
save_model(model, str(checkpoint_path / 'params_{:04}.pt'.format(epoch + 1)))
torch.save(optimizer.state_dict(), str(checkpoint_path / 'optim_{:04}.pt'.format(epoch + 1)))
print('Epoch {:<4} Loss: {:.8f}'.format(epoch, epoch_loss))
print()
# Eval in each epoch
accs = eval_model(model, alphas, dataloader['test'], xls_sheet=xls_wb.add_sheet('epoch{}'.format(epoch + 1)))
acc_dict = {"{}".format(cls): single_acc for cls, single_acc in zip(dataloader['test'].dataset.classes, accs)}
acc_dict['average'] = torch.mean(accs)
tfboard_writer.add_scalars(
'Eval acc',
acc_dict,
(epoch + 1) * cfg.TRAIN.EPOCH_ITERS
)
wb.save(wb.__save_path)
scheduler.step()
cfg.sigma_norm = cfg.sigma_norm*(1+cfg.sigma_decay)
time_elapsed = time.time() - since
print('Training complete in {:.0f}h {:.0f}m {:.0f}s'
.format(time_elapsed // 3600, (time_elapsed // 60) % 60, time_elapsed % 60))
return model
if __name__ == '__main__':
from src.utils.dup_stdout_manager import DupStdoutFileManager
from src.utils.parse_args import parse_args
from src.utils.print_easydict import print_easydict
from src.utils.count_model_params import count_parameters
args = parse_args('Deep learning of graph matching training & evaluation code.')
import importlib
mod = importlib.import_module(cfg.MODULE)
Net = mod.Net
torch.manual_seed(cfg.RANDOM_SEED)
#cfg.PROBLEM.TYPE = 'MGM'
dataset_len = {'train': cfg.TRAIN.EPOCH_ITERS * cfg.BATCH_SIZE, 'test': cfg.EVAL.SAMPLES}
image_dataset = {
x: GMDataset(cfg.DATASET_FULL_NAME,
sets=x,
problem=cfg.PROBLEM.TYPE,
length=dataset_len[x],
#cls=cfg.TRAIN.CLASS if x == 'train' else cfg.EVAL.CLASS,
obj_resize=cfg.PROBLEM.RESCALE)
for x in ('train', 'test')}
dataloader = {x: get_dataloader(image_dataset[x], fix_seed=(x == 'test'))
for x in ('train', 'test')}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = Net()
'''
Multiple_GPU_training = False
if Multiple_GPU_training and torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.nn.DataParallel(model)
model.to(device)
##########
else:
model.to(device)
'''
model.to(device)
if cfg.TRAIN.LOSS_FUNC.lower() == 'offset':
criterion = RobustLoss(norm=cfg.TRAIN.RLOSS_NORM)
elif cfg.TRAIN.LOSS_FUNC.lower() == 'perm':
criterion = PermutationLoss()
elif cfg.TRAIN.LOSS_FUNC.lower() == 'ce':
criterion = CrossEntropyLoss()
elif cfg.TRAIN.LOSS_FUNC.lower() == 'focal':
criterion = FocalLoss(alpha=.5, gamma=0.)
elif cfg.TRAIN.LOSS_FUNC.lower() == 'hung':
criterion = PermutationLossHung()
elif cfg.TRAIN.LOSS_FUNC.lower() == 'hamming':
criterion = HammingLoss()
else:
raise ValueError('Unknown loss function {}'.format(cfg.TRAIN.LOSS_FUNC))
if cfg.TRAIN.SEPARATE_BACKBONE_LR:
'''
if Multiple_GPU_training:
backbone_ids = [id(item) for item in model.module.backbone_params]
other_params = [param for param in model.parameters() if id(param) not in backbone_ids]
model_params = [
# {'params': other_params, 'lr': 1.5*cfg.TRAIN.LR, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY},
{'params': other_params},
{'params': model.module.backbone_params, 'lr': cfg.TRAIN.BACKBONE_LR}
]
'''
backbone_ids = [id(item) for item in model.backbone_params]
other_params = [param for param in model.parameters() if id(param) not in backbone_ids]
model_params = [
#{'params': other_params, 'lr': 1.5*cfg.TRAIN.LR, 'weight_decay': cfg.TRAIN.WEIGHT_DECAY},
{'params': other_params},
{'params': model.backbone_params, 'lr': cfg.TRAIN.BACKBONE_LR}
]
else:
model_params = model.parameters()
if cfg.TRAIN.OPTIMIZER.lower() == 'sgd':
optimizer = optim.SGD(model_params, lr=cfg.TRAIN.LR, momentum=cfg.TRAIN.MOMENTUM, nesterov=True)
elif cfg.TRAIN.OPTIMIZER.lower() == 'adam':
optimizer = optim.Adam(model_params, lr=cfg.TRAIN.LR)
else:
raise ValueError('Unknown optimizer {}'.format(cfg.TRAIN.OPTIMIZER))
'''
if cfg.OPTIMIZATION_METHOD == 'Direct':
if cfg.TRAIN.OPTIMIZER.lower() == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=2*1e-4, momentum=cfg.TRAIN.MOMENTUM, nesterov=True)
elif cfg.TRAIN.OPTIMIZER.lower() == 'adam':
optimizer = optim.Adam(model_params, lr=cfg.TRAIN.LR)
print("chose adam with lr", str(cfg.TRAIN.LR))
'''
if cfg.FP16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to enable FP16.")
model, optimizer = amp.initialize(model, optimizer)
model = DataParallel(model, device_ids=cfg.GPUS)
if not Path(cfg.OUTPUT_PATH).exists():
Path(cfg.OUTPUT_PATH).mkdir(parents=True)
now_time = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
#tfboardwriter = SummaryWriter(logdir=str(Path(cfg.OUTPUT_PATH) / 'tensorboard' / 'training_{}'.format(now_time)))
tfboardwriter = SummaryWriter(logdir=str(Path(cfg.OUTPUT_PATH) / ('tensorboard'+'_'+str(cfg.MATCHING_TYPE) +'_'+str(cfg.source_partial_kpt_len)+'_'+str(cfg.target_partial_kpt_len)+'_GConv_normalization_'+str(cfg.crossgraph_s_normalization)+str(cfg.OPTIMIZATION_METHOD)+'_sample_'+str(cfg.samples_per_num_train)+'_'+str(cfg.PROBLEM.TYPE)) / 'training_{}'.format(now_time)))
log_path = Path(cfg.OUTPUT_PATH) / ('logs'+'_'+str(cfg.MATCHING_TYPE)+'_'+str(cfg.source_partial_kpt_len)+'_'+str(cfg.target_partial_kpt_len)+'_GConv_normalization_'+str(cfg.crossgraph_s_normalization)+str(cfg.OPTIMIZATION_METHOD)+'_sample_'+str(cfg.samples_per_num_train)+'_'+str(cfg.PROBLEM.TYPE))
if not log_path.exists():
log_path.mkdir(parents=True)
wb = xlwt.Workbook()
wb.__save_path = str(Path(cfg.OUTPUT_PATH) / ('train_eval_result_' + now_time + '.xls'))
with DupStdoutFileManager(os.path.join(log_path, 'train_log_' + now_time + '.log')) as _:
print_easydict(cfg)
print('Number of parameters: {:.2f}M'.format(count_parameters(model) / 1e6))
model = train_eval_model(model, criterion, optimizer, dataloader, tfboardwriter,
#num_epochs=10,
num_epochs=cfg.TRAIN.NUM_EPOCHS,
start_epoch=cfg.TRAIN.START_EPOCH,
xls_wb=wb)
wb.save(wb.__save_path)