-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpath_net.py
83 lines (64 loc) · 2.86 KB
/
path_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import torch.nn
import torch.nn.functional as F
from torch_geometric.nn import GINConv, global_add_pool, global_max_pool, global_mean_pool
from torch_cluster import random_walk
class PathSimplifiedGCN(torch.nn.Module):
def __init__(self, input_dim, hidden_dim, num_gc_layers, activation, readout):
super(PathSimplifiedGCN, self).__init__()
self.activation = activation()
self.readout = readout
self.convs = torch.nn.ModuleList()
self.bns = torch.nn.ModuleList([torch.nn.BatchNorm1d(hidden_dim)] * num_gc_layers)
for i in range(num_gc_layers):
if i == 0:
mlp = torch.nn.Linear(input_dim, hidden_dim)
else:
mlp = torch.nn.Linear(hidden_dim, hidden_dim)
self.convs.append(mlp)
def forward(self, x, edge_index, batch):
z = x
g = []
row = edge_index[0].cuda()
col = edge_index[1].cuda()
start = torch.tensor(list(range(x.shape[0]))).cuda()
walk2 = torch.transpose(random_walk(row, col, start, walk_length=2), 0, 1)
walk3 = torch.transpose(random_walk(row, col, start, walk_length=3), 0, 1)
walk4 = torch.transpose(random_walk(row, col, start, walk_length=4), 0, 1)
for i, conv in enumerate(self.convs):
# matrix operation
z = conv(z)
path2_emb = z[walk2[0]] + z[walk2[1]] + z[walk2[2]]
path3_emb = z[walk3[0]] + z[walk3[1]] + z[walk3[2]] + z[walk3[3]]
path4_emb = z[walk4[0]] + z[walk4[1]] + z[walk4[2]] + z[walk4[3]] + z[walk4[4]]
path_emb = path2_emb + path3_emb + path4_emb
path_batch = batch[walk2[0]]
if self.readout == 'mean':
g.append(global_mean_pool(path_emb, path_batch))
elif self.readout == 'max':
g.append(global_max_pool(path_emb, path_batch))
elif self.readout == 'sum':
g.append(global_add_pool(path_emb, path_batch))
g = torch.cat(g, dim=1)
return g
class PathSimplifiedMLP(torch.nn.Module):
def __init__(self, input_dim, hidden_dim, num_mlp_layers, activation):
super(PathSimplifiedMLP, self).__init__()
self.net = []
self.net.append(torch.nn.Linear(input_dim, hidden_dim))
for _ in range(num_mlp_layers - 1):
self.net.append(torch.nn.Linear(hidden_dim, hidden_dim))
self.net = torch.nn.Sequential(*self.net)
def forward(self, x):
return self.net(x)
class PathPooling(torch.nn.Module):
def __init__(self, gnn, mlp):
super(PathPooling, self).__init__()
self.gnn = gnn
self.mlp = mlp
def forward(self, x, edge_index, batch, device):
if x is None:
x = torch.ones((batch.shape[0], 1)).to(device)
g = self.gnn(x, edge_index, batch)
g = self.mlp(g)
return g