-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_utils.py
98 lines (81 loc) · 3.6 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#%%
import pickle
from torch_geometric.data import Dataset, Batch, Data
from torch_geometric.data.data import size_repr
import torch
import numpy as np
class GraphSetDataset(Dataset):
def __init__(self, data_path):
super().__init__()
with open(data_path, 'rb') as f:
self.data_list = pickle.load(f)
targets = np.array([self.data_list[i][-1][0] for i in range(len(self.data_list))])
self.target_mean = np.mean(targets)
self.target_std = np.std(targets)
def len(self):
return len(self.data_list)
def get(self, idx):
sample = self.data_list[idx]
normalized_target = [float((sample[-1][0] - self.target_mean) / self.target_std)]
normalized_sample = sample[:-1] + (normalized_target,)
return normalized_sample
def get_orig(self, target):
return target * self.target_std + self.target_mean
def graph_set_collate(batch):
_, graph_lists, mws, weight_lists, mol_lists, salt_graphs, ys = zip(*batch)
batched_graph_sets = [Batch.from_data_list(g_list) for g_list in graph_lists]
return batched_graph_sets, mws, weight_lists, mol_lists, salt_graphs, ys
# Data classes for DMPNN
class RevIndexedData(Data):
def __init__(self, orig):
super(RevIndexedData, self).__init__()
if orig:
for key in orig.keys():
self[key] = orig[key]
edge_index = self["edge_index"]
revedge_index = torch.zeros(edge_index.shape[1]).long()
for k, (i, j) in enumerate(zip(*edge_index)):
edge_to_i = edge_index[1] == i
edge_from_j = edge_index[0] == j
revedge_index[k] = torch.where(edge_to_i & edge_from_j)[0].item()
self["revedge_index"] = revedge_index
def __inc__(self, key, value, *args, **kwargs):
if key == "revedge_index":
return self.revedge_index.max().item() + 1
else:
return super().__inc__(key, value)
def __repr__(self):
cls = str(self.__class__.__name__)
has_dict = any([isinstance(item, dict) for _, item in self])
if not has_dict:
info = [size_repr(key, item) for key, item in self]
return "{}({})".format(cls, ", ".join(info))
else:
info = [size_repr(key, item, indent=2) for key, item in self]
return "{}(\n{}\n)".format(cls, ",\n".join(info))
class RevIndexedDataset(Dataset):
def __init__(self, data_path):
super().__init__()
with open(data_path, 'rb') as f:
orig_list = pickle.load(f)
self.data_list = []
for sample in orig_list:
graph_list = sample[1]
updated_graph_list = []
for graph in graph_list:
updated_graph = RevIndexedData(graph)
updated_graph_list.append(updated_graph)
updated_sample = (sample[0], updated_graph_list, sample[2], sample[3], sample[4], RevIndexedData(sample[5]), sample[6])
self.data_list.append(updated_sample)
targets = np.array([self.data_list[i][-1][0] for i in range(len(self.data_list))])
self.target_mean = np.mean(targets)
self.target_std = np.std(targets)
def len(self):
return len(self.data_list)
def get(self, idx):
sample = self.data_list[idx]
normalized_target = [float((sample[-1][0] - self.target_mean) / self.target_std)]
normalized_sample = sample[:-1] + (normalized_target,)
return normalized_sample
def get_orig(self, target):
return target * self.target_std + self.target_mean