diff --git a/hipercam/hlog.py b/hipercam/hlog.py index 5899d814..6286fb24 100644 --- a/hipercam/hlog.py +++ b/hipercam/hlog.py @@ -791,7 +791,7 @@ def get_mask(self, bitmask=None, flag_bad=True): bad = self.get_bad() else: # Do not flag bad data - bad = np.zeros_like(self.t, dtype=np.bool) + bad = np.zeros_like(self.t, dtype=bool) if bitmask is not None: # Flag data matching the bitmask diff --git a/hipercam/scripts/hmeta.py b/hipercam/scripts/hmeta.py index 54229722..5bd410c1 100644 --- a/hipercam/scripts/hmeta.py +++ b/hipercam/scripts/hmeta.py @@ -228,29 +228,29 @@ def hmeta(args=None): {}, {}, {}, {}, {}, {}, {}, {}, {}, {} for cnam, ncframe in ncframes.items(): if linstrument == 'ultraspec': - medians[cnam] = np.empty_like(ncframe,dtype=np.float) + medians[cnam] = np.empty_like(ncframe,dtype=float) elif linstrument == 'ultracam': medians[cnam] = { - 'L' : np.empty_like(ncframe,dtype=np.float), - 'R' : np.empty_like(ncframe,dtype=np.float) + 'L' : np.empty_like(ncframe,dtype=float), + 'R' : np.empty_like(ncframe,dtype=float) } elif linstrument == 'hipercam': medians[cnam] = { - 'E' : np.empty_like(ncframe,dtype=np.float), - 'F' : np.empty_like(ncframe,dtype=np.float), - 'G' : np.empty_like(ncframe,dtype=np.float), - 'H' : np.empty_like(ncframe,dtype=np.float) + 'E' : np.empty_like(ncframe,dtype=float), + 'F' : np.empty_like(ncframe,dtype=float), + 'G' : np.empty_like(ncframe,dtype=float), + 'H' : np.empty_like(ncframe,dtype=float) } - means[cnam] = np.empty_like(ncframe,dtype=np.float) - mins[cnam] = np.empty_like(ncframe,dtype=np.float) - p1s[cnam] = np.empty_like(ncframe,dtype=np.float) - p5s[cnam] = np.empty_like(ncframe,dtype=np.float) - p16s[cnam] = np.empty_like(ncframe,dtype=np.float) - p84s[cnam] = np.empty_like(ncframe,dtype=np.float) - p95s[cnam] = np.empty_like(ncframe,dtype=np.float) - p99s[cnam] = np.empty_like(ncframe,dtype=np.float) - maxs[cnam] = np.empty_like(ncframe,dtype=np.float) + means[cnam] = np.empty_like(ncframe,dtype=float) + mins[cnam] = np.empty_like(ncframe,dtype=float) + p1s[cnam] = np.empty_like(ncframe,dtype=float) + p5s[cnam] = np.empty_like(ncframe,dtype=float) + p16s[cnam] = np.empty_like(ncframe,dtype=float) + p84s[cnam] = np.empty_like(ncframe,dtype=float) + p95s[cnam] = np.empty_like(ncframe,dtype=float) + p99s[cnam] = np.empty_like(ncframe,dtype=float) + maxs[cnam] = np.empty_like(ncframe,dtype=float) # now access the data and calculate stats. we have to # remember that ultracam and hipercam have different