-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
426 lines (342 loc) · 19 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import io
import os
import time
import openai
import tiktoken
import pandas as pd
import streamlit as st
from dotenv import load_dotenv
from utils.blob_storage_handlers import *
from utils.prompts import *
from utils.CSV_formatter import format_anamnezis_csv, format_gyogyszer_csv
from utils.streamlit_functions import *
from utils.table_transform import format_table
from io import StringIO
from utilities import (
extract_text_between_brackets,
load_txt,
create_db,
concat_docs_count_tokens
)
load_dotenv()
# Define default variables
MODEL_INPUT_TOKEN_SUMM_LIMIT = 125000
MODEL_MAX_TOKEN_LIMIT = 128000
MAX_TOKENS = MODEL_MAX_TOKEN_LIMIT-MODEL_INPUT_TOKEN_SUMM_LIMIT
MAX_CONTEXT_QUESTIONS = 120
TEMPERATURE = 0
encoding = tiktoken.get_encoding("cl100k_base")
# TODO: change embedder to azure oai
embedder = 'text-embedding-ada-002'
MODEL = 'gpt-4-1106-preview'
account_name = str(os.environ['azure_name'])
key = str(os.environ['azure_key'])
blob_storage = connect_to_storage(account_name, key)
openai_api = str(os.environ['openai_api_key'])
openai.api_key = openai_api
os.environ["OPENAI_API_KEY"] = openai_api
def set_config():
st.set_page_config(layout="wide")
def generate_embeddings(text):
response = openai.Embedding.create(input=text, model = embedder)
embeddings = response['data'][0]['embedding']
return embeddings
def generate_response(messages, MODEL, TEMPERATURE, MAX_TOKENS):
completion = openai.ChatCompletion.create(
model=MODEL,
messages=messages,
temperature=TEMPERATURE,
max_tokens=MAX_TOKENS)
return completion.choices[0]['message']['content']
def retrieve_relevant_chunks(user_input, db, model):
query_embedded = generate_embeddings(user_input)
sim_docs = db.max_marginal_relevance_search_by_vector(query_embedded, k = 3)
results = [doc.metadata['source'].split("\\")[-1] + "-page-" + str(doc.metadata['page'] )+ ": " + doc.page_content.replace("\n", "").replace("\r", "") for doc in sim_docs]
sources = "\n".join(results)
return sources
def table_string_generator(docs, generator, input_tokens) -> str:
if len(input_tokens) + 3000 <= MODEL_INPUT_TOKEN_SUMM_LIMIT:
print('include all documents')
results = [doc.metadata['source'].split("\\")[-1] + "-page-" + str(doc.metadata['page'] )+ ": " + doc.page_content.replace("\n", "").replace("\r", "") for doc in docs]
sources = "\n".join(results)
else:
sources = retrieve_relevant_chunks(generator,st.session_state.db, MODEL)
messages =[
{"role": "system", "content" : "You are a helpful assistant helping people answer their questions related to documents."},
{"role": "user", "content": table_gen_system_message.format(system_prompt = generator, sources=sources)}
]
full_response = generate_response(messages, MODEL, TEMPERATURE, MAX_TOKENS)
return full_response.replace('; ',';') if len(full_response.split(";")) > 5 else ""
def upload_table(selected_id, generator, document_type, input_tokens):
timestamp = datetime.datetime.now().strftime( "%Y%m%d%H%M%S")
gyogyszer_docs = []
if document_type == "gyogyszer":
for uploaded_file in st.session_state.files:
txt_doc_chunks = load_txt(select_blob_file(blob_storage, st.session_state.selected_container,uploaded_file),filename=uploaded_file['name'].split('/')[-1])
gyogyszer_docs.extend(txt_doc_chunks)
WHOLE_DOC, gyogyszer_input_tokens = concat_docs_count_tokens(gyogyszer_docs, encoding)
generated_text = table_string_generator(gyogyszer_docs, generator, gyogyszer_input_tokens)
else:
generated_text = table_string_generator(st.session_state.docs, generator, input_tokens)
if generated_text != "":
match document_type:
case "anam":
upload_to_blob_storage(blob_storage, st.session_state.selected_container,f"{selected_id}/cache/{selected_id}_anamnezis_of_{timestamp}.csv",generated_text)
st.session_state.anam_row_index = ""
case "gyogyszer":
# st.info(generated_text)
upload_to_blob_storage(blob_storage, st.session_state.selected_container,f"{selected_id}/cache/{selected_id}_gyogyszererzekenyseg_{timestamp}.csv",generated_text)
st.session_state.gyogyszer_row_index = ""
st.session_state.files = [file for file in list_files_in_container(blob_storage, st.session_state.selected_container) if len(file['name'].split('/')) > 2 and selected_id in file['name'].split('/')[-1]]
return True
else:
return False
def talk_to_your_docs():
if "selected_id" not in st.session_state:
st.session_state.selected_id = ""
if "selected_container" not in st.session_state:
st.session_state.selected_container = ""
if "docs" not in st.session_state:
st.session_state.docs = []
if "db" not in st.session_state:
st.session_state.db = None
if "files" not in st.session_state:
st.session_state.files = []
if "id_list" not in st.session_state:
st.session_state.id_list = []
# - - - - - - - - - - - - - - - -
# Select container and id
# - - - - - - - - - - - - - - - -
selected_container = st.selectbox("Válassza ki a használni kívánt állományt:", st.session_state.container_list)
if selected_container != st.session_state.selected_container:
ids = set([file['name'].split('/')[0] for file in list_files_in_container(blob_storage, selected_container)])
st.session_state.id_list = sorted(ids)
selected_id = st.selectbox("Válassza ki az azonosítót:", st.session_state.id_list)
if selected_container != st.session_state.selected_container or selected_id != st.session_state.selected_id:
time.sleep(1.5)
#### clear cache ####
is_authenticated = st.session_state.authenticated
selected_id_list = st.session_state.id_list
container_list = st.session_state.container_list
st.cache_data.clear()
for key in st.session_state.keys():
if key not in ['authenticated','password_correct']:
del st.session_state[key]
st.session_state.authenticated = is_authenticated
st.session_state.selected_id = selected_id
st.session_state.selected_container = selected_container
st.session_state.id_list = selected_id_list
st.session_state.container_list = container_list
#### UPLOAD DOCS #####
docs = []
#first filtering, current ID filter
files = [file for file in list_files_in_container(blob_storage, selected_container) if len(file['name'].split('/')) > 2 and selected_id in file['name'].split('/')[-1]]
#second filtering, chunking sources (txt-s)
selected_files = [file for file in files if file['name'].split('/')[2] == "filtered" and f"{selected_id}_" in file['name'].split('/')[-1]]
if selected_files:
for uploaded_file in selected_files:
txt_doc_chunks = load_txt(select_blob_file(blob_storage,selected_container,uploaded_file),filename=uploaded_file['name'].split('/')[-1])
docs.extend(txt_doc_chunks)
#### STORE DOCS IN VECTOR DATABASE
embeddings, st.session_state.db = create_db(docs)
st.session_state.docs = docs
st.session_state.files = [file for file in list_files_in_container(blob_storage, selected_container) if len(file['name'].split('/')) > 2 and selected_id in file['name'].split('/')[-1]]
# - - - - - - - - - - - - - - - -
# Define Session state elements
# - - - - - - - - - - - - - - - -
# Set a default model
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = MODEL
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
if "source_links" not in st.session_state:
st.session_state.source_links = None
if "anam_html_table_name" not in st.session_state:
st.session_state.anam_html_table_name = ""
if "gyogyszer_html_table_name" not in st.session_state:
st.session_state.gyogyszer_html_table_name = ""
if "chat_html_table_name" not in st.session_state:
st.session_state.chat_html_table_name = ""
if "anam_row_index" not in st.session_state:
st.session_state.anam_row_index = ""
if "gyogyszer_row_index" not in st.session_state:
st.session_state.gyogyszer_row_index = ""
# - - - - - - - - - - - - - - - -
# Start frontend
# - - - - - - - - - - - - - - - -
st.title("Semmelweis X Hiflylabs")
st.header("Semmelweis GenAI/LLM Anamnézis PoC")
st.write("Készítette: Hiflylabs")
WHOLE_DOC, input_tokens = concat_docs_count_tokens(st.session_state.docs, encoding)
st.write('A paciens dokumentumainak tokenszáma: ' + str(len(input_tokens)))
# - - - - - - - - - - - - - - - -
# initializing anamnezis table
# - - - - - - - - - - - - - - - -
st.subheader("Anamnézis szekció")
csv_file = [file for file in st.session_state.files if file['name'].split('/')[1] == 'cache' and 'anamnezis_of' in file['name']]
if len(csv_file) == 0:
if st.button("Tábla generálása", key = "anam_table_gen_btn"):
upload_table(selected_id, anam_gen_system_prompt, 'anam', input_tokens)
csv_file = [file for file in st.session_state.files if file['name'].split('/')[1] == 'cache' and 'anamnezis_of' in file['name']]
if len(csv_file) > 0:
csv_doc =pd.read_csv(io.StringIO(select_blob_file(blob_storage,selected_container,csv_file[-1])), sep=';')
formatted_csv = format_anamnezis_csv(csv_doc)
column_names = [col for col in formatted_csv.columns]
cols = st.columns((1, 4, 2, 3, 2, 4, 3))
for idx in range(1, len(cols)):
cols[idx].caption(column_names[idx-1])
for index, row in formatted_csv.iterrows():
col1, col2, col3, col4, col5, col6, col7 = st.columns((1, 4, 2, 3, 2, 4, 3))
col1.write(index + 1)
col2.write(row[column_names[0]])
col3.write(row[column_names[1]])
col4.write(row[column_names[2]])
col5.write(row[column_names[3]])
col6.write(row[column_names[4]])
do_action = col7.button("forrás" if len(row[column_names[5]].split('_')) > 1 and len(row[column_names[5]].split('_')) > 1 else "", key=f"diagnosis_btn_{index}", type="primary")
if do_action:
if index + 1 != st.session_state.anam_row_index:
st.session_state.anam_row_index = index + 1
if row[column_names[5]] != st.session_state.anam_html_table_name:
st.session_state.anam_html_table_name = row[column_names[5]]
#### feedback and source display ####
block_feedback(blob_storage, formatted_csv, st.session_state, "anam")
document_displayer(blob_storage, st.session_state, "anam")
# - - - - - - - - - - - - - - - -
# Initializing gyogyszererzekenyseg table
# - - - - - - - - - - - - - - - -
st.subheader("Gyógyszerérzékenység szekció")
gen_success = True
csv_file = [file for file in st.session_state.files if file['name'].split('/')[1] == 'cache' and 'gyogyszererzekenyseg' in file['name']]
if len(csv_file) == 0:
if st.button("Tábla generálása", key = "gyogyszer_table_gen_btn"):
gen_success = upload_table(selected_id, gyogyszer_gen_system_prompt, 'gyogyszer', input_tokens)
csv_file = [file for file in st.session_state.files if file['name'].split('/')[1] == 'cache' and 'gyogyszererzekenyseg' in file['name']]
if len(csv_file) > 0 and gen_success:
csv_doc =pd.read_csv(io.StringIO(select_blob_file(blob_storage,selected_container,csv_file[-1])), sep=';')
formatted_csv = format_gyogyszer_csv(csv_doc)
if len(formatted_csv) > 0:
column_names = [col for col in formatted_csv.columns]
cols = st.columns((1, 2, 2, 2, 2))
for idx in range(1, len(cols)):
cols[idx].caption(column_names[idx-1])
for index, row in formatted_csv.iterrows():
col1, col2, col3, col4, col5 = st.columns((1, 2, 2, 2, 2))
col1.write(index + 1)
col2.write(row[column_names[0]])
col3.write(row[column_names[1]])
col4.write(row[column_names[2]])
do_action = col5.button("forrás" if str(row[column_names[3]]) != 'nan' and len(row[column_names[3]].split('_')) > 1 else "", key=f"gyogyszer_btn_{index}", type="primary")
if do_action:
if index + 1 != st.session_state.gyogyszer_row_index:
st.session_state.gyogyszer_row_index = index + 1
if str(row[column_names[3]]) != 'nan' and row[column_names[3]] != st.session_state.gyogyszer_html_table_name:
st.session_state.gyogyszer_html_table_name = row[column_names[3]]
#### feedback and source display ####
block_feedback(blob_storage, formatted_csv, st.session_state, "gyogyszer")
document_displayer(blob_storage, st.session_state, "gyogyszer")
else:
st.write("Nem található releváns adat")
# - - - - - - - - - - - - - - -
# Chat main part
# - - - - - - - - - - - - - - -
st.subheader("Chat szekció")
msg = st.chat_message('assistant')
msg.write("Üdvözlöm! 👋 Tegyen fel kérdéseket a kiválasztott pácienssel kapcsolatban!")
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if QUERY := st.chat_input("Ide írja a kérdését"):
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(QUERY)
# Display assistant response in chat message container
with st.chat_message("assistant"):
message_placeholder = st.empty()
if len(input_tokens) <= MODEL_INPUT_TOKEN_SUMM_LIMIT:
print('include all documents')
results = [doc.metadata['source'].split("\\")[-1] + "-page-" + str(doc.metadata['page'] )+ ": " + doc.page_content.replace("\n", "").replace("\r", "") for doc in st.session_state.docs]
sources = "\n".join(results)
else:
sources = retrieve_relevant_chunks(QUERY, st.session_state.db, MODEL)
messages =[
{"role": "system", "content" : "You are a helpful assistant helping people answer their questions related to documents."},
{"role": "user", "content": system_message.format(system_prompt = default_system_prompt, sources=sources)},
*st.session_state.messages,
{"role": "user", "content": question_message.format(question=QUERY)}
]
current_token_count = len(encoding.encode(' '.join([i['content'] for i in messages])))
while (len(messages)-3 > MAX_CONTEXT_QUESTIONS * 2) or (current_token_count >= MODEL_INPUT_TOKEN_SUMM_LIMIT):
messages.pop(3)
current_token_count = len(encoding.encode(' '.join([i['content'] for i in messages])))
full_response = generate_response(messages, MODEL, TEMPERATURE, MAX_TOKENS)
message_placeholder.markdown(full_response)
# Add user and AI message to chat history
st.session_state.messages.append({"role": "user", "content": QUERY})
st.session_state.messages.append({"role": "assistant", "content": full_response})
st.session_state.chat_html_table_name = ""
#### Chat source display part ####
if len(st.session_state.messages) > 0:
source_links = extract_text_between_brackets(st.session_state.messages[-1]['content'])
if st.session_state.source_links != source_links:
st.session_state.source_links = None
sources_expander = st.expander(label='Forrás')
with sources_expander:
if len(input_tokens) <= MODEL_INPUT_TOKEN_SUMM_LIMIT:
for element_id in range(len(source_links)):
if st.button(source_links[element_id],key=f"expander_btn_{element_id}", type="primary"):
if source_links[element_id].split('-p')[0] != st.session_state.chat_html_table_name:
st.session_state.chat_html_table_name = source_links[element_id].split('-p')[0]
else:
st.write("A válasz generálásához az alábbi, relevánsnak ítélt dokumentumok lettek felhasználva:")
st.text(sources)
document_displayer(blob_storage, st.session_state, "chat")
def upload_file():
container_name = st.text_input("Írja be az állomány nevét",key="input_container_name")
st.markdown("""
Kérem itt töltse fel az adatokat tartalmazó excel táblát, melyet használni akar.
A feltöltés csak az előre meghatározott paraméterekkel rendelkező táblák esetében működik.
Header: "NPI|CASE_NO|ADMIT_DATE|CASE_TYPE|DEPT|DESCR|TX_TYPE|VER_NO|SEQ_NO|Ananmézis|Jelen panaszok|Dekurzus|Epikrízis|Egyéb vizsgálatok|Műtéti leírás|Státusz|Javaslat|Therápia"
""")
uploaded_file = st.file_uploader("Töltse fel a fájlokat! Elfogadott formátumok: xlsx",
type = 'xlsx', accept_multiple_files=False)
if st.button("Feltöltés", key="submit_xlsx_btn"):
df_raw = pd.read_excel(uploaded_file, engine='openpyxl', dtype={'NPI':'object', 'CASE_NO':'object'}).convert_dtypes()
blob_storage.create_container(container_name)
format_table(df_raw, blob_storage, container_name)
st.session_state.container_list = [container['name'] for container in blob_storage.list_containers()]
def app_main():
set_config()
if "container_list" not in st.session_state:
st.session_state.container_list = [container['name'] for container in blob_storage.list_containers()]
if "authenticated" not in st.session_state:
st.session_state.authenticated = False
if not st.session_state.authenticated and not check_password():
st.stop()
else:
st.session_state.authenticated = True
page_names_to_funcs = {
"Talk to your document":talk_to_your_docs,
"Dokumentum feltöltés": upload_file
}
st.sidebar.image("img/semmelweis_logo_transparent.png", use_column_width=True)
window_name = st.sidebar.selectbox("Válaszd ki a használandó funkciót", page_names_to_funcs.keys())
st.sidebar.title("Leírás")
st.sidebar.markdown(
"""
Lépések\n
1. Talk to your documents
1.1 Személy kiválasztása
1.2 Ha a táblázat nem biztosít elég anyagot,
akkor a chat segítségével lehet további
adatokat kinyerni a rendszerből.
2. Dokumentum feltöltés
2.1 Dokumentum helyes formában való feltöltése
"""
)
format_button_style()
page_names_to_funcs[window_name]()
if __name__ == "__main__":
app_main()