-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinputData.m
45 lines (32 loc) · 1.05 KB
/
inputData.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function [raw_data, train_T, train_I, test_T, test_I, validation_T, validation_I] = inputData()
% Get Inputs
% Load data for LSTM Model
data = readtable('SP500_standardise.csv');
data = table2timetable(data);
%Partition the Training data manually
dataTrain = data(1:5112, :);
dataValidation = data(5113:6208, :);
dataTest = data(6209:end, :);
%use first column as the target (Open price)
train_T = dataTrain{:,1};
%Use all columns as inputs
train_I = dataTrain(:, 1:end);
train_I = timetable2table(train_I);
train_I = table2array(train_I(:, 2:end));
validation_T = dataValidation{:,1};
validation_I = dataValidation(:, 1:end);
validation_I = timetable2table(validation_I);
validation_I = table2array(validation_I(:, 2:end));
test_T = dataTest{:,1};
test_I = dataTest(:, 1:end);
test_I = timetable2table(test_I);
test_I = table2array(test_I(:, 2:end));
raw_data = data;
% Transpose Data to use as input for LSTM model
train_I = train_I.';
train_T = train_T.';
test_T = test_T.';
test_I = test_I.';
validation_T = validation_T.';
validation_I = validation_I.';
end