-
Notifications
You must be signed in to change notification settings - Fork 11
/
lecture-02.tex
335 lines (308 loc) · 11.2 KB
/
lecture-02.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
\documentclass[handout]{beamer}
\usepackage{graphicx}
\usepackage{tikz-cd}
\title{EPIT Lecture 5.2\\ The Universal Cover of the Circle}
\author{Egbert Rijke}
\date{Friday, April 16th 2020}
\setbeamertemplate{caption}{\raggedright\insertcaption\par}
\mathchardef\usc="2D
\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\UU}{\mathcal{U}}
\newcommand{\brck}[1]{\|#1\|}
\newcommand{\Brck}[1]{\left\|#1\right\|}
\newcommand{\trunc}[2]{\|#2\|_{#1}}
\newcommand{\Trunc}[2]{\left\|#2\right\|_{#1}}
\newcommand{\unit}{\mathbf{1}}
\newcommand{\sphere}[1]{S^{#1}}
\newcommand{\isnull}{\mathsf{is\usc{}null}}
\newcommand{\htpy}{\sim}
\newcommand{\apbinary}{\mathsf{ap\usc{}bin}}
\newcommand{\Glob}{\mathsf{Glob}}
\newcommand{\typeGlob}{\mathsf{type}}
\newcommand{\relGlob}{\mathsf{rel}}
\newcommand{\homGlob}{\mathsf{hom}}
\newcommand{\maphomGlob}{\mathsf{map}}
\newcommand{\cgrhomGlob}{\mathsf{cgr}}
\newcommand{\bihomGlob}{\mathsf{bihom}}
\newcommand{\mapbihomGlob}{\mathsf{map}}
\newcommand{\cgrbihomGlob}{\mathsf{cgr}}
\newcommand{\ct}{\bullet}
\newcommand{\isconstant}[2]{\mathsf{is\usc{}}(#1,#2)\mathsf{\usc{}constant}}
\newcommand{\ap}{\mathsf{ap}}
\newcommand{\interchange}{\mathsf{interchange}}
\newcommand{\refl}{\mathsf{refl}}
\newcommand{\eh}{\mathsf{eckmann\usc{}hilton}}
\newcommand{\blank}{\mathord{\hspace{1pt}\text{--}\hspace{1pt}}}
\newcommand{\EM}{\mathsf{EM}}
\newcommand{\baseS}{\mathsf{base}}
\newcommand{\loopS}{\mathsf{loop}}
\newcommand{\apd}{\mathsf{apd}}
\newcommand{\tr}{\mathsf{tr}}
\newcommand{\idfunc}{\mathsf{id}}
\newcommand{\mulcircle}{\mu}
\newcommand{\basemulcircle}{\mathsf{base\usc{}mul}_{\sphere{1}}}
\newcommand{\loopmulcircle}{\mathsf{loop\usc{}mul}_{\sphere{1}}}
\newcommand{\htpyidcircle}{H}
\newcommand{\basehtpyidcircle}{\alpha}
\newcommand{\loophtpyidcircle}{\beta}
\newcommand{\invcircle}{\mathsf{inv}_{\sphere{1}}}
\newcommand{\evbase}{\mathsf{ev\usc{}base}}
\newcommand{\eqhtpy}{\mathsf{eq\usc{}htpy}}
\newcommand{\apply}[2]{#1(#2)}
\newcommand{\equiveq}{\mathsf{equiv\usc{}eq}}
\newcommand{\succZ}{\mathsf{succ}}
\newcommand{\bool}{\mathsf{bool}}
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{footline}[frame number]{}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}
\frametitle{Main theorem of this lecture}
\begin{definition}
Let $A$ be a type equipped with a point $a:A$. Then we define the \textbf{loop space} of $A$ at $a$ to be the type
\begin{equation*}
\Omega(A,a):= (a=a).
\end{equation*}
It comes equipped with the point $\refl:\Omega(A,a)$.
\end{definition}
\begin{theorem}
There is an equivalence
\begin{equation*}
\Omega(\sphere{1},\baseS)\simeq \Z.
\end{equation*}
\end{theorem}
\end{frame}
\begin{frame}
\begin{theorem}[The fundamental theorem of identity types]
Consider a type $A$ with base point $a:A$. Let $B$ be a type family over $A$ equipped with a point $b:B(a)$. Then the following are equivalent:
\begin{enumerate}
\item The family of maps
\begin{equation*}
f : (a=x)\to B(x)
\end{equation*}
indexed by $x:A$, given by $f(\refl):=b$, is a family of equivalences.
\item The type
\begin{equation*}
\sum_{(x:A)}B(x)
\end{equation*}
is contractible.
\end{enumerate}
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{The encode-decode method}
Suppose we want to show that $\Omega(A,a)\simeq G$, for some type $G$.
\begin{itemize}
\item First define a type family
\begin{equation*}
B : A \to \UU
\end{equation*}
equipped with an equivalence $e:B(a)\simeq G$. $B$ is said to \textbf{encode} the identity type of $A$.
\item Then show that the total space
\begin{equation*}
\sum_{(x:A)}B(x)
\end{equation*}
is contractible.
\end{itemize}
By the fundamental theorem it then follows that the family of maps
\begin{equation*}
(a=x)\to B(x)
\end{equation*}
indexed by $x:A$, given by $f(\refl):=e^{-1}(1)$, is a family of equivalences. In particular, we obtain
\begin{equation*}
(a=a)\simeq B(a)\simeq G.
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Encoding the identity type of $\sphere{1}$}
Our goal is to show that $\Omega(\sphere{1},\baseS)\simeq \Z$. For the second step in the encode decode method, we have to construct a type family
\begin{equation*}
B : \sphere{1}\to \UU.
\end{equation*}
Such a family is constructed by the universal property of $\sphere{1}$(!!)
\begin{theorem}
The map
\begin{equation*}
(\sphere{1}\to\UU)\to\sum_{(X:\UU)}X\simeq X
\end{equation*}
given by $P\mapsto (P(\baseS),\tr_P(\loopS))$ is an equivalence.
\end{theorem}
\end{frame}
\begin{frame}
\begin{proof}
We have a commuting triangle
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\& (\sphere{1}\to\UU) \arrow[dl,swap,"{P\mapsto(P(\baseS),\ap_P(\loopS))}"] \arrow[dr,"{P\mapsto(P(\baseS),\tr_P(\loopS))}"] \\
\sum_{(X:\UU)}X=X \arrow[rr,swap,"{(X,p)\mapsto(X,\equiveq(p))}"] \& \& \sum_{(X:\UU)}X\simeq X
\end{tikzcd}
\end{equation*}
This triangle commutes, because
\begin{equation*}
\equiveq(\ap_P(q))=\tr_P(q)
\end{equation*}
for any identification $q:x=y$ in $\sphere{1}$.
\begin{itemize}
\item The bottom map is an equivalence by univalence.
\item The left map is an equivalence by the universal property of $\sphere{1}$.
\item Hence the right map is an equivalence.\qedhere
\end{itemize}
\end{proof}
\end{frame}
\begin{frame}
\frametitle{Here's how to define a type family over $\sphere{1}$}
Suppose we have
\begin{align*}
X & : \UU \\
e & : X \simeq X.
\end{align*}
By the equivalence $(\sphere{1}\to\UU)\simeq\sum_{(X:\UU)}X\simeq X$ we then obtain a unique family $P:\sphere{1}\to\UU$ equipped with
\begin{itemize}
\item an equivalence $\alpha:X\simeq P(\baseS)$.
\item a homotopy witnessing that the square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
X \arrow[d,swap,"e"] \arrow[r,"\alpha"] \& P(\baseS) \arrow[d,"\tr_P(\loopS)"] \\
X \arrow[r,swap,"\alpha"] \& P(\baseS)
\end{tikzcd}
\end{equation*}
commutes.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{The universal cover of $\sphere{1}$}
\begin{definition}
The \textbf{universal cover} of $\sphere{1}$ is the unique family $E$ over $\sphere{1}$ equipped with
\begin{itemize}
\item An equivalence $e:\Z\simeq E(\baseS)$.
\item A homotopy $H$ witnessing that the square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\Z \arrow[d,swap,"\succZ"] \arrow[r,"e"] \& E(\baseS) \arrow[d,"\tr_E(\loopS)"] \\
\Z \arrow[r,swap,"e"] \& E(\baseS)
\end{tikzcd}
\end{equation*}
commutes. Given $k:\Z$, we will write $k_E:=e(k)$.
\end{itemize}
\end{definition}
\end{frame}
\begin{frame}
\begin{lemma}[Helix]
\begin{itemize}
\item For any $k:\Z$ we have $\sigma_k:(\baseS,k_E)=(\baseS,\succZ(k)_E)$.
\item For any $k:\Z$ we have $\tau_k:(\baseS,0_E)=(\baseS,k_E)$, such that
\begin{equation*}
\tau_{k+1}=\tau_k\bullet \sigma_k
\end{equation*}
holds for any $k:\Z$.
\end{itemize}
\end{lemma}
\begin{proof}
By the characterisation of the identity types of $\Sigma$-types, we have
\begin{equation*}
((\baseS,k_E)=(\baseS,\succZ(k)_E)) \simeq \sum\nolimits_{(p:\baseS=\baseS)}\tr_E(p,k_E)=\succZ(k)_E.
\end{equation*}
In the right hand side we have $(\loopS,H(k))$, where $H$ is the homotopy in the definition of $E$. This proves the first claim.\\[1em]
The second claim follows by the dependent elimination principle of $\Z$.
\end{proof}
\end{frame}
\begin{frame}
\frametitle{The dependent elimination principle of $\Z$}
\begin{theorem}
Let $P:\Z\to\UU$ be a type family. If $P$ comes equipped with
\begin{itemize}
\item a point $p_0:P(0)$.
\item a family of equivalences $e_k:P(k)\simeq P(\succZ(k))$ indexed by $k:\Z$.
\end{itemize}\pause
Then there is a dependent function $f:\prod_{(k:\Z)}P(k)$ equipped with
\begin{itemize}
\item an identification $f(0)=p_0$.
\item a family of identifications
\begin{equation*}
f(\succZ(k))=e_k(f(k))
\end{equation*}
indexed by $k:\Z$.
\end{itemize}
\end{theorem}
\end{frame}
\begin{frame}
\frametitle{The second step in the encode-decode method}
\begin{theorem}
The total space
\begin{equation*}
\sum_{(t:\sphere{1})}E(t)
\end{equation*}
is contractible, with center of contraction $(\baseS,0_E)$.
\end{theorem}
\begin{proof}
Our goal is to construct the contraction, i.e.,
\begin{equation*}
\prod_{(x:\sphere{1})}\prod_{(u:E(x))}(\baseS,0_E)=(x,u).
\end{equation*}
We do this with the induction principle of $\sphere{1}$, using the family $C$ given by
\begin{equation*}
C(x):=\prod_{(u:E(x))}(\baseS,0_E)=(x,u)
\end{equation*}
\\[10cm]
Hiding the QED symbol
\end{proof}
\end{frame}
\begin{frame}
\frametitle{Proof (cont.)}
We have to define
\begin{align*}
p & : C(\baseS) \\
q & : \tr_C(\loopS,p)=p.
\end{align*}
Note that we have a commuting square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&]
\prod_{(k:\Z)}(\baseS,0_E)=(\baseS,k_E) \arrow[r,"\alpha","\sim"'] \arrow[d,swap,"{p\mapsto \lambda k.\,p_{k+1}\bullet\sigma_k^{-1}}"] \& C(\baseS) \arrow[d,"\tr_C(\loopS)"] \\
\prod_{(k:\Z)}(\baseS,0_E)=(\baseS,k_E) \arrow[r,swap,"\alpha","\sim"'] \& C(\baseS)
\end{tikzcd}
\end{equation*}
By this square we obtain for $p:\prod_{(k:\Z)}(\baseS,0_E)=(\baseS,k_E)$, a map
\begin{equation*}
\Big(\prod_{(k:\Z)}p_{k+1}=p_k\bullet \sigma_k^{-1}\Big)\to \Big(\tr_C(\loopS,\alpha(p))=\alpha(p)\Big)
\end{equation*}
We apply the Helix lemma to finish the proof.\hfill $\square$
\end{frame}
\begin{frame}
We have now proven our theorem:
\begin{theorem}
There is an equivalence
\begin{equation*}
\Omega(\sphere{1},\baseS)\simeq \Z.
\end{equation*}
\end{theorem}
\begin{corollary}
The circle is a $1$-type, and it is not a set. In particular, it is not contractible.
\end{corollary}
\end{frame}
\begin{frame}
\frametitle{Exercises}
The \textbf{(twisted) double cover} of the circle is defined as the unique type family $D$ over $\sphere{1}$ equipped with
\begin{itemize}
\item An equivalence $\bool\simeq D(\baseS)$.
\item A homotopy witnessing that the square
\begin{equation*}
\begin{tikzcd}[ampersand replacement=\&,row sep=1.4em]
\bool \arrow[r,"e"] \arrow[d,swap,"\mathsf{neg}"] \& D(\baseS) \arrow[d,"\tr_{D}(\loopS)"] \\
\bool \arrow[r,swap,"e"] \& D(\baseS)
\end{tikzcd}
\end{equation*}
commutes.
\end{itemize}
Construct an equivalence $\alpha:{\sphere{1}}\simeq{\sum_{(t:\sphere{1})}D(t)}$ for which the triangle
\begin{equation*}
\begin{tikzcd}[column sep=0em,ampersand replacement=\&,row sep=small]
\sphere{1} \arrow[rr,"\alpha"] \arrow[dr,swap,"\mathsf{deg}(2)"] \& \& \sum_{(t:\sphere{1})}D(t) \arrow[dl,"\pi_1"] \\
\phantom{\sum_{(t:\sphere{1})}D(t)} \& \sphere{1}
\end{tikzcd}
\end{equation*}
commutes, where $\mathsf{deg}(2):\sphere{1}\to\sphere{1}$ is the degree $2$ map.
\end{frame}
\end{document}