-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
487 lines (414 loc) · 16.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import pandas as pd
import random
from enum import Enum
import logging
import math
class PredictionModel(object):
"""
abstract prediction model class
"""
def __init__(self, model_data):
self._params = {}
self._model_meta = model_data
self.load_model_detail(model_data['model_detail'])
@property
def id(self):
return self._model_meta['id']
@id.setter
def id(self, value):
self._model_meta['id'] = value
@property
def doi(self):
return self._model_meta['doi']
@property
def outcome(self):
return self._model_meta['outcome']
@property
def outcome(self):
return self._model_meta['outcome']
@property
def model_type(self):
return self._model_meta['model_type']
@property
def model_data(self):
return self._model_meta
def predict_prob(self, x):
pass
def predict(self, x, threshold=0.5):
probs = self.predict_prob(x)
return [(1 if p >= threshold else 0) for p in probs]
def load_model_detail(self, model_detail):
pass
def get_params(self):
return self._params
def check_x(self, x):
if not isinstance(x, pd.DataFrame):
raise Exception('the parameter x needs to be a pandas DataFrame instance')
missing_params = []
for p in self.get_params():
if p not in x.columns:
missing_params.append(p)
if len(missing_params) > 0:
raise Exception('x does not have these variables: {0}'.format(missing_params))
class LogisticRegression(PredictionModel):
"""
Logistic Regression model
"""
def __init__(self, model_data):
self._intercept = 0.0
super(LogisticRegression, self).__init__(model_data)
def load_model_detail(self, model_detail):
if 'Intercept' not in model_detail:
raise Exception('intercept not found in model detail')
self._intercept = model_detail['Intercept']
for k in model_detail:
if k != 'Intercept':
self._params[k] = model_detail[k]
def predict_prob(self, x):
from math import exp
self.check_x(x)
y = []
cols = [p for p in self.get_params()]
for idx, r in x.iterrows():
g = self._intercept
for c in cols:
g += self._params[c] * r[c]
y.append(1.0 / (1 + exp(-g)))
return y
class DecisionTree(PredictionModel):
def __init__(self, model_data):
self._params = {}
self._root = None
self._nodes = {}
self._prob_mode = DTProbModel.m_estimation
self._event_rate = 0.5
super(DecisionTree, self).__init__(model_data)
@property
def prob_mode(self):
return self._prob_mode
@prob_mode.setter
def prob_model(self, v):
self._prob_mode = v
def load_model_detail(self, model_detail):
if 'nodes' not in model_detail:
raise Exception('decision tree model does not find nodes')
self._event_rate = model_detail['event_rate']
nodes = model_detail['nodes']
for n in nodes:
node = TreeNode(n)
if n['id'] == 'root':
self._root = node
else:
self._nodes[n['id']] = node
self._params[node.variable] = node.id
def predict_prob(self, x):
self.check_x(x)
probs = []
for idx, r in x.iterrows():
n = self._root
while n is not None:
ret = n.to(r)
if 'outcome' in ret:
# print('outcome at {0}, {1}'.format(n.op, n.variable), idx, ret)
prob = ret['outcome']
if 'support' in ret:
prob = self.cal_prob(ret['outcome'], ret['support'])
probs.append(prob)
break
else:
n = self._nodes[ret['id']]
return probs
def cal_prob(self, outcome, support):
s_t = support['T']
s_f = support['F']
if outcome == 0:
s_t = support['F']
s_f = support['T']
if self.prob_mode == DTProbModel.maximum_likelihood:
return DecisionTree.maximum_likelihood(s_t, s_f)
elif self.prob_mode == DTProbModel.laplace_estimate:
return DecisionTree.laplace_estimate(s_t, s_f)
elif self.prob_mode == DTProbModel.m_estimation:
return DecisionTree.m_estimation(s_t, s_f, self._event_rate)
@staticmethod
def maximum_likelihood(case_support, control_support):
return 1.0 * case_support / (case_support + control_support)
@staticmethod
def laplace_estimate(case_support, control_support):
return 1.0 * (case_support + 1)/ (case_support + control_support + 2)
@staticmethod
def m_estimation(case_support, control_support, prior_prob):
m = 10 / prior_prob
return 1.0 * (case_support + m * prior_prob)/ (case_support + control_support + m)
class DTProbModel(Enum):
maximum_likelihood = 1,
laplace_estimate = 2,
m_estimation = 3
class TreeNode(object):
def __init__(self, node_data):
self._id = node_data['id']
self._var = node_data['variable']
self._op = node_data['to']['condition']
self._yes = node_data['to']['yes']
self._no = node_data['to']['no']
@property
def id(self):
return self._id
@property
def variable(self):
return self._var
@property
def op(self):
return self._op
def compute(self, x):
if self._var not in x:
raise Exception('column [{0}] not found when doing node computing'.format(self._var))
v = x[self._var]
return ModelUtil.binary_operator(self._op, v)
def to(self, x):
if self.compute(x):
return self._yes
else:
return self._no
class ModelUtil(object):
@staticmethod
def binary_operator(op, v):
if op['op'] == 'less':
return v < op['val']
elif op['op'] == 'lesseq':
return v <= op['val']
elif op['op'] == 'greater':
return v > op['val']
elif op['op'] == 'greatereq':
return v >= op['val']
elif op['op'] == 'eq':
return v == op['val']
else:
raise Exception("unknown operator [{0}]".format(op['op']))
class ScoringModel(PredictionModel):
def __init__(self, model_data):
self._params = {}
self._max_score = 0
self._score_to_prob = {}
super(ScoringModel, self).__init__(model_data)
def load_model_detail(self, model_detail):
for v in model_detail['variables']:
self._params[v] = model_detail['variables'][v]
self._max_score += model_detail['variables'][v]['yes'] \
if model_detail['variables'][v]['yes'] > model_detail['variables'][v]['no'] else model_detail['variables'][v]['no']
for t in model_detail['score_probs']:
self._score_to_prob[str(t[0])] = t[1]
@property
def max_score(self):
return self._max_score
def predict_prob(self, x):
from math import exp
self.check_x(x)
probs = []
for idx, r in x.iterrows():
score = 0
for p in self._params:
if p not in r:
raise Exception('variable [{0}] not found in [{1}]'.format(p, r))
op = self._params[p]
score += op['yes'] if ModelUtil.binary_operator(op, r[p]) else op['no']
probs.append(self.get_prob(score))
# probs.append(1 / (1 + exp(-score)))
return probs
def get_prob(self, score):
s = str(score)
if s not in self._score_to_prob:
logging.warn('score {0} not in score_to_prob data'.format(s))
return 1.0 * score / self.max_score
else:
return self._score_to_prob[str(score)]
class NomogramModel(PredictionModel):
"""
Nmogram prediction - essentially a sequence of linear functions
"""
def __init__(self, model_data):
self._params = {}
self._unit_point_scale = [0, 100]
self._total_point_scale = [0, 350]
self._pp_mappings = None
super(NomogramModel, self).__init__(model_data)
def load_model_detail(self, model_detail):
self._unit_point_scale = model_detail['unit_point_scale']
self._total_point_scale = model_detail['total_point_scale']
self._pp_mappings = sorted(model_detail['point-to-prediction-mappings'], key=lambda x: x['point'])
for v in model_detail['variables']:
self._params[v] = model_detail['variables'][v]
def predict_prob(self, x):
self.check_x(x)
probs = []
for idx, r in x.iterrows():
point = self.calculate_points(r)
probs.append(self.get_predict_prob_by_point(point))
return probs
def calculate_points(self, r):
points = 0
for v in self._params:
if v not in r:
raise Exception('variable [{0}] not found in {1}'.format(v, r))
val = r[v]
cal = self._params[v]
if cal['type'] == 'discrete':
matched = False
last_point = 0
for t in cal['map']:
if t['range'][0] <= val <= t['range'][1]:
points += t['point']
matched = True
break
else:
last_point = t['point']
if not matched:
logging.info('{0} value {1} not matched, using nearest range point'.format(v, val))
points += last_point
else:
point_range = t['point']
val_range = t['variable']
if val > val_range[0]:
ratio = 1.0 * (val - val_range[0]) / (val_range[1] - val_range[0])
points += ratio * (point_range[1] - point_range[0]) + point_range[0]
return points
def get_predict_prob_by_point(self, point):
prev = None
next = None
for t in self._pp_mappings:
if point <= t['point']:
next = t
break
prev = t
if prev is None:
if point == next['point']:
return t['predict']
else:
return 0
else:
if next is not None:
ratio = (point - prev['point']) / (next['point'] - prev['point'])
return (next['predict'] - prev['predict']) * ratio + prev['predict']
else:
return 1
class NOCOS(PredictionModel):
"""
a function reimplemented from https://cbmi.northwell.edu/nocos/
"""
def __init__(self, model_data):
self._detail = {}
super(NOCOS, self).__init__(model_data)
def predict_prob(self, x):
self.check_x(x)
probs = []
for idx, r in x.iterrows():
probs.append(1 - NOCOS.covid19SurvivalProbabilityFormula_v4(r, self._detail['calculationData']))
return probs
def load_model_detail(self, model_detail):
self._detail = model_detail
@staticmethod
def covid19SurvivalProbabilityFormula_v4(factorInput, calculationData):
predictorData = calculationData['predictorData']
bayesData = calculationData['bayesData']
x = 0.0
for pd in predictorData:
if pd['id'] in factorInput:
factorValue = float(factorInput[pd['id']])
else:
factorValue = 0.0
## ignore validate not convertable values as an error would be raised anyway
# if factorValue is None:
# factorValue = 0.0
sigma = 1.0 * pd['sigma']
mu = 1.0 * pd['mu']
coefficient = 1.0 * pd['coefficient']
x = x + coefficient * ((factorValue - mu) / sigma)
LPos = 0.0
posteriorData = calculationData['paretoData']['posteriorPos']
if x < posteriorData['threshold1']:
LPos = NOCOS.lowerParetoTail(posteriorData['p1'], posteriorData['sigma1'], posteriorData['k1'], posteriorData['threshold1'], x)
elif x > posteriorData['threshold2']:
LPos = NOCOS.upperParetoTail(posteriorData['p2'], posteriorData['sigma2'], posteriorData['k2'], posteriorData['threshold2'], x)
else:
LPos = NOCOS.polynomial(posteriorData['coefficients'], x)
LNeg = 0.0
posteriorData = calculationData['paretoData']['posteriorNeg']
if x < posteriorData['threshold1']:
LNeg = NOCOS.lowerParetoTail(posteriorData['p1'], posteriorData['sigma1'], posteriorData['k1'], posteriorData['threshold1'], x)
elif x > posteriorData['threshold2']:
LNeg = NOCOS.upperParetoTail(posteriorData['p2'], posteriorData['sigma2'], posteriorData['k2'], posteriorData['threshold2'], x)
else:
LNeg = NOCOS.polynomial(posteriorData['coefficients'], x)
return LPos * calculationData['paretoData']['priorPos'] / (LPos * calculationData['paretoData']['priorPos'] + LNeg * calculationData['paretoData']['priorNeg'])
@staticmethod
def lowerParetoTail(p, sigma, k, threshold, randomVar):
return p * (1.0 / sigma) * math.pow((1.0 + k * (threshold - randomVar) / sigma), (-1.0 - (1.0 / k)))
@staticmethod
def upperParetoTail(p, sigma, k, threshold, randomVar):
return (1.0 - p) * (1 / sigma) * math.pow((1.0 + k * (randomVar - threshold) / sigma), (-1.0 - (1.0 / k)))
@staticmethod
def polynomial(coefficients, randomVar):
result = 0.0
for i in range(len(coefficients)):
result += coefficients[i] * (randomVar ** i)
return result
class Imputator(object):
"""
abstract imputation class
"""
def __init__(self):
pass
def impute(self, x, variables):
pass
class BinaryImputator(Imputator):
def __init__(self):
super().__init__()
def impute(self, x, variables, val_generator=lambda num_r: [0] * num_r):
for v in variables:
if v not in x:
x[v] = val_generator(x.shape[0])
return x
class DistributionImputator(Imputator):
"""
use median and iqr to impute data
"""
def __init__(self, dist):
super().__init__()
self._dist = dist
def impute(self, x_orig, variables):
if not isinstance(x_orig, pd.DataFrame):
raise Exception('the parameter x needs to be a pandas DataFrame instance')
x = x_orig # .copy()
ignore_impute_vars = []
for v in variables:
if v not in x.columns:
if v not in self._dist:
raise Exception('{0} does not have a distribution data'.format(v))
d = self._dist[v]
if 'type' in d and d['type'] == 'binary':
# don't do binary, they are put in for collecting model variable purpose only
ignore_impute_vars.append(v)
continue
if 'median' not in d:
raise Exception('only continuous variable imputations supported [{0}]'.format(d))
x.loc[:, v] = [DistributionImputator.iqr_random_value(d['median'], d['l25'], d['h25'])
for idx in range(0, x.shape[0])]
na_cols = x.columns[x.isna().any()].tolist()
to_impute_cols = [v for v in variables if v in na_cols and v not in ignore_impute_vars]
if len(to_impute_cols) > 0:
for idx, r in x.iterrows():
for c in to_impute_cols:
if pd.isna(r[c]):
d = self._dist[c]
x.loc[idx, c] = \
DistributionImputator.iqr_random_value(d['median'], d['l25'], d['h25'])
return x
@staticmethod
def iqr_random_value(median, l25, h25):
r = random.random()
if r <= 0.0:
return median - (median - l25) * random.random()
elif 0.0 < r <= 1:
return median
else:
return median + (h25 - median) * random.random()