-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathTrain.py
executable file
·165 lines (142 loc) · 6.65 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
'''
Created on August 1, 2018
@author : hsiaoyetgun (yqxiao)
'''
# coding: utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from Model import Decomposable
import os
from Utils import *
import sys
from datetime import datetime
import Config
# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# feed data into feed_dict
def feed_data(premise, premise_mask, hypothesis, hypothesis_mask, y_batch,
dropout_keep_prob):
feed_dict = {model.premise: premise,
model.premise_mask: premise_mask,
model.hypothesis: hypothesis,
model.hypothesis_mask: hypothesis_mask,
model.y: y_batch,
model.dropout_keep_prob: dropout_keep_prob}
return feed_dict
# evaluate current model on devset
def evaluate(sess, premise, premise_mask, hypothesis, hypothesis_mask, y):
batches = next_batch(premise, premise_mask, hypothesis, hypothesis_mask, y)
data_nums = len(premise)
total_loss = 0.0
total_acc = 0.0
for batch in batches:
batch_nums = len(batch[0])
feed_dict = feed_data(*batch, 1.0)
loss, acc = sess.run([model.loss, model.acc], feed_dict=feed_dict)
total_loss += loss * batch_nums
total_acc += acc * batch_nums
return total_loss / data_nums, total_acc / data_nums
# training
def train():
# load data
print_log('Loading training and validation data ...', file=log)
start_time = time.time()
premise_train, premise_mask_train, hypothesis_train, hypothesis_mask_train, y_train = sentence2Index(arg.trainset_path, vocab_dict)
premise_dev, premise_mask_dev, hypothesis_dev, hypothesis_mask_dev, y_dev = sentence2Index(arg.devset_path, vocab_dict)
print(len(premise_train), len(premise_dev))
data_nums = len(premise_train)
time_diff = get_time_diff(start_time)
print_log('Time usage : ', time_diff, file=log)
# model saving
saver = tf.train.Saver(max_to_keep=5)
save_file_dir, save_file_name = os.path.split(arg.save_path)
if not os.path.exists(save_file_dir):
os.makedirs(save_file_dir)
# for TensorBoard
print_log('Configuring TensorBoard and Saver ...', file=log)
if not os.path.exists(arg.tfboard_path):
os.makedirs(arg.tfboard_path)
tf.summary.scalar('loss', model.loss)
tf.summary.scalar('accuracy', model.acc)
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter(arg.tfboard_path)
# init
sess = tf.Session()
sess.run(tf.global_variables_initializer(), {model.embed_matrix : embeddings})
# count trainable parameters
total_parameters = count_parameters()
print_log('Total trainable parameters : {}'.format(total_parameters), file=log)
# training
print_log('Start training and evaluating ...', file=log)
start_time = time.time()
total_batch = 0
best_acc_val = 0.0
last_improved_batch = 0
isEarlyStop = False
for epoch in range(arg.num_epochs):
print_log('Epoch : ', epoch + 1, file=log)
batches = next_batch(premise_train, premise_mask_train, hypothesis_train, hypothesis_mask_train, y_train, batchSize=arg.batch_size)
total_loss, total_acc = 0.0, 0.0
for batch in batches:
batch_nums = len(batch[0])
feed_dict = feed_data(*batch, arg.dropout_keep_prob)
_, batch_loss, batch_acc = sess.run([model.train, model.loss, model.acc], feed_dict=feed_dict)
total_loss += batch_loss * batch_nums
total_acc += batch_acc * batch_nums
# evaluta on devset
if total_batch % arg.eval_batch == 0:
# write tensorboard scalar
s = sess.run(merged_summary, feed_dict=feed_dict)
writer.add_summary(s, total_batch)
feed_dict[model.dropout_keep_prob] = 1.0
loss_val, acc_val = evaluate(sess, premise_dev, premise_mask_dev, hypothesis_dev, hypothesis_mask_dev, y_dev)
# save model
saver.save(sess = sess, save_path = arg.save_path + '_dev_loss_{:.4f}.ckpt'.format(loss_val))
# save best model
if acc_val > best_acc_val:
best_acc_val = acc_val
last_improved_batch = total_batch
saver.save(sess = sess, save_path = arg.best_path)
improved_flag = '*'
else:
improved_flag = ''
# show batch training information
time_diff = get_time_diff(start_time)
msg = 'Epoch : {0:>3}, Batch : {1:>8}, Train Batch Loss : {2:>6.2}, Train Batch Acc : {3:>6.2%}, Dev Loss : {4:>6.2}, Dev Acc : {5:>6.2%}, Time : {6} {7}'
print_log(msg.format(epoch + 1, total_batch, batch_loss, batch_acc, loss_val, acc_val, time_diff, improved_flag))
total_batch += 1
# early stop judge
if total_batch - last_improved_batch > arg.early_stop_step:
print_log('No optimization for a long time, auto-stopping ...', file = log)
isEarlyStop = True
break
if isEarlyStop:
break
time_diff = get_time_diff(start_time)
total_loss, total_acc = total_loss / data_nums, total_acc / data_nums
msg = '** Epoch : {0:>2} finished, Train Loss : {1:>6.2}, Train Acc : {2:6.2%}, Time : {3}'
print_log(msg.format(epoch + 1, total_loss, total_acc, time_diff), file = log)
if __name__ == '__main__':
# read config
config = Config.ModelConfig()
arg = config.arg
vocab_dict = load_vocab(arg.vocab_path)
arg.vocab_dict_size = len(vocab_dict)
if arg.embedding_path:
embeddings = load_embeddings(arg.embedding_path, vocab_dict)
else:
embeddings = init_embeddings(vocab_dict, arg.embedding_size)
arg.n_vocab, arg.embedding_size = embeddings.shape
if arg.embedding_normalize:
embeddings = normalize_embeddings(embeddings)
arg.n_classes = len(CATEGORIE_ID)
dt = datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
arg.log_path = 'config/log/log.{}'.format(dt)
log = open(arg.log_path, 'w')
print_log('CMD : python3 {0}'.format(' '.join(sys.argv)), file = log)
print_log('Training with following options :', file = log)
print_args(arg, log)
model = Decomposable(arg.seq_length, arg.n_vocab, arg.embedding_size, arg.hidden_size, arg.attention_size, arg.n_classes,\
arg.batch_size, arg.learning_rate, arg.optimizer, arg.l2, arg.clip_value)
train()
log.close()