-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_LOPO_motion.py
472 lines (357 loc) · 15.1 KB
/
main_LOPO_motion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import time
from ParticipantLab import ParticipantLab as parti
import numpy as np
import tensorflow as tf
import sys
import pickle
import os
import copy
from sklearn.metrics import confusion_matrix, f1_score, precision_score, recall_score,accuracy_score
import matplotlib.pyplot as plt
import itertools
import csv
from sklearn import metrics
from enum import Enum
import librosa.display
import sys
from scipy import stats
import datetime
from scipy.fftpack import dct
import _pickle as cPickle
from models import *
import torch
torch.backends.cudnn.benchmark=True
torch.manual_seed(1)
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data
from torch.utils.data import DataLoader
from torch.utils.data import TensorDataset
os.environ["CUDA_VISIBLE_DEVICES"]="1"
from utils_ import plotCNNStatistics
import random
torch.backends.cudnn.deterministic = True
random.seed(1)
# torch.manual_seed(1)
# torch.cuda.manual_seed(1)
# np.random.seed(1)
from sklearn import metrics
from torch.utils.data.sampler import WeightedRandomSampler
from torch.utils.tensorboard import SummaryWriter
from models import create, StatisticsContainer
from utils.utils import paint, Logger, AverageMeter
from utils.utils_plot import plot_confusion
from utils.utils_pytorch import (
get_info_params,
get_info_layers,
init_weights_orthogonal,
)
from utils.utils_mixup import mixup_data, MixUpLoss
from utils.utils_centerloss import compute_center_loss, get_center_delta
import warnings
warnings.filterwarnings("ignore")
def model_train(model, dataset, dataset_val, args):
print(paint("[STEP 4] Running HAR training loop ..."))
logger = SummaryWriter(log_dir=os.path.join(model.path_logs, "train"))
logger_val = SummaryWriter(log_dir=os.path.join(model.path_logs, "val"))
loader = DataLoader(dataset, args['batch_size'], True, pin_memory=True)
loader_val = DataLoader(dataset_val, args['batch_size'], False, pin_memory=True)
criterion = nn.CrossEntropyLoss(reduction="mean").cuda()
params = filter(lambda p: p.requires_grad, model.parameters())
if args['optimizer'] == "Adam":
optimizer = optim.Adam(params, lr=args['lr'])
elif args['optimizer'] == "RMSprop":
optimizer = optim.RMSprop(params, lr=args['lr'])
if args['lr_step'] > 0:
scheduler = optim.lr_scheduler.StepLR(
optimizer, step_size=args['lr_step'], gamma=args['lr_decay']
)
if args['init_weights'] == "orthogonal":
print(paint("[-] Initializing weights (orthogonal)..."))
model.apply(init_weights_orthogonal)
metric_best = 0.0
start_time = time.time()
for epoch in range(args['epochs']):
print("--" * 50)
print("[-] Learning rate: ", optimizer.param_groups[0]["lr"])
train_one_epoch(model, loader, criterion, optimizer, epoch, args)
loss, acc, fm, rm, pm, fw = eval_one_epoch(
model, loader, criterion, epoch, logger, args
)
loss_val, acc_val, fm_val, rm_val, pm_val, fw_val = eval_one_epoch(
model, loader_val, criterion, epoch, logger_val, args
)
print(
paint(
f"[-] Epoch {epoch}/{args['epochs']}"
f"\tTrain loss: {loss:.2f} \tacc: {acc:.2f}(%)\tfm: {fm:.2f}(%)\trm: {rm:.2f}(%)\tpm: {pm:.2f}(%)\tfw: {fw:.2f}(%)"
)
)
print(
paint(
f"[-] Epoch {epoch}/{args['epochs']}"
f"\tVal loss: {loss_val:.2f} \tacc: {acc_val:.2f}(%)\tfm: {fm_val:.2f}(%)\trm: {rm_val:.2f}(%)\tpm: {pm_val:.2f}(%)\tfw: {fw_val:.2f}(%)"
)
)
checkpoint = {
"model_state_dict": model.state_dict(),
"optim_state_dict": optimizer.state_dict(),
"criterion_state_dict": criterion.state_dict(),
"random_rnd_state": random.getstate(),
"numpy_rnd_state": np.random.get_state(),
"torch_rnd_state": torch.get_rng_state(),
}
metric = fm_val
if metric >= metric_best:
print(paint(f"[*] Saving checkpoint... ({metric_best}->{metric})", "blue"))
metric_best = metric
torch.save(
checkpoint, os.path.join(model.path_checkpoints, "checkpoint_best.pth")
)
if epoch % 5 == 0:
torch.save(
checkpoint,
os.path.join(model.path_checkpoints, f"checkpoint_{epoch}.pth"),
)
if args['lr_step'] > 0:
scheduler.step()
trainLoss = {'Trainloss': loss}
args['statistics'].append(epoch, trainLoss, data_type='Trainloss')
valLoss = {'Testloss': loss_val}
args['statistics'].append(epoch, valLoss, data_type='Testloss')
test_f1 = {'test_f1':fm}
args['statistics'].append(epoch, test_f1, data_type='test_f1')
args['statistics'].dump()
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
print(paint(f"[STEP 4] Finished HAR training loop (h:m:s): {elapsed}"))
print(paint("--" * 50, "blue"))
def train_one_epoch(model, loader, criterion, optimizer, epoch, args):
losses = AverageMeter("Loss")
model.train()
for batch_idx, (data, target) in enumerate(loader):
data = data.cuda()
target = target.view(-1).cuda()
centers = model.centers
if args['mixup']:
data, y_a_y_b_lam = mixup_data(data, target, args['alpha'])
z, logits = model(data)
if args['mixup']:
criterion = MixUpLoss(criterion)
loss = criterion(logits, y_a_y_b_lam)
else:
loss = criterion(logits, target)
center_loss = compute_center_loss(z, centers, target)
loss = loss + args['beta'] * center_loss
losses.update(loss.item(), data.shape[0])
optimizer.zero_grad()
loss.backward()
if args['clip_grad'] > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args['clip_grad'])
optimizer.step()
center_deltas = get_center_delta(z.data, centers, target, args['lr_cent'])
model.centers = centers - center_deltas
if batch_idx % args['print_freq']== 0:
print(f"[-] Batch {batch_idx}/{len(loader)}\t Loss: {str(losses)}")
if args['mixup']:
criterion = criterion.get_old()
def eval_one_epoch(model, loader, criterion, epoch, logger, args):
losses = AverageMeter("Loss")
y_true, y_pred = [], []
model.eval()
with torch.no_grad():
for batch_idx, (data, target) in enumerate(loader):
data = data.cuda()
target = target.cuda()
z, logits = model(data)
loss = criterion(logits, target.view(-1))
losses.update(loss.item(), data.shape[0])
probabilities = nn.Softmax(dim=1)(logits)
_, predictions = torch.max(probabilities, 1)
y_pred.append(predictions.cpu().numpy().reshape(-1))
y_true.append(target.cpu().numpy().reshape(-1))
y_true = np.concatenate(y_true, 0)
y_pred = np.concatenate(y_pred, 0)
acc = 100.0 * metrics.accuracy_score(y_true, y_pred)
fm = 100.0 * metrics.f1_score(y_true, y_pred, average="macro")
rm = 100.0* metrics.recall_score(y_true, y_pred, average="macro")
pm = 100.0*metrics.precision_score(y_true, y_pred, average="macro")
fw = 100.0 * metrics.f1_score(y_true, y_pred, average="weighted")
if logger:
logger.add_scalars("Loss", {"CrossEntropy": losses.avg}, epoch)
logger.add_scalar("Acc", acc, epoch)
logger.add_scalar("Fm", fm, epoch)
logger.add_scalar("Rm", rm, epoch)
logger.add_scalar("Pm", pm, epoch)
logger.add_scalar("Fw", fw, epoch)
if epoch % 50 == 0 or not args['train_mode']:
plot_confusion(
y_true,
y_pred,
os.path.join(model.path_visuals, f"cm/{args['participant']}"),
epoch,
class_map=args['class_map'],
)
return losses.avg, acc, fm, rm, pm, fw
def model_eval(model, dataset_test, args):
print(paint("[STEP 5] Running HAR evaluation loop ..."))
loader_test = DataLoader(dataset_test, args['batch_size'], False, pin_memory=True)
criterion = nn.CrossEntropyLoss(reduction="mean").cuda()
print("[-] Loading checkpoint ...")
if args['train_mode']:
path_checkpoint = os.path.join(model.path_checkpoints, "checkpoint_best.pth")
else:
path_checkpoint = os.path.join(f"./weights/checkpoint.pth")
checkpoint = torch.load(path_checkpoint)
model.load_state_dict(checkpoint["model_state_dict"])
criterion.load_state_dict(checkpoint["criterion_state_dict"])
start_time = time.time()
loss_test, acc_test, fm_test, rm_test, pm_test, fw_test = eval_one_epoch(
model, loader_test, criterion, -1, logger=None, args=args
)
print(
paint(
f"[-] Test loss: {loss_test:.2f}"
f"\tacc: {acc_test:.2f}(%)\tfm: {fm_test:.2f}(%)\trm: {rm_test:.2f}(%)\tpm: {pm_test:.2f}(%)\tfw: {fw_test:.2f}(%)"
)
)
results.writerow([str(args['participant']), str(pm_test), str(rm_test), str(fm_test), str(acc_test)])
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
print(paint(f"[STEP 5] Finished HAR evaluation loop (h:m:s): {elapsed}"))
if __name__ == '__main__':
P = 15
win_size = 10
hop = .5
participants = []
if os.path.exists('../Data/rawAudioSegmentedData_window_' + str(win_size) + '_hop_' + str(hop) + '_Test.pkl'):
with open('../Data/rawAudioSegmentedData_window_' + str(win_size) + '_hop_' + str(hop) + '_Test.pkl', 'rb') as f:
participants = pickle.load(f)
else:
start = time.time()
for j in range (1, P+1):
pname = str(j).zfill(2)
p = parti(pname, '../Data',win_size, hop, normalized = False)
p.readRawAudioMotionData()
participants.append(p)
print('participant',j,'data read...')
end = time.time()
print("time for feature extraction: " + str(end - start))
with open('../Data/rawAudioSegmentedData_window_' + str(win_size) + '_hop_' + str(hop) + '_Test.pkl', 'wb') as f:
pickle.dump(participants, f)
model_name = 'AttendDiscriminate'
experiment = 'LOPO_motion'
config_model = {
"model": model_name,
"input_dim": 6,
"hidden_dim": 128,
"filter_num": 64,
"filter_size": 5,
"enc_num_layers": 2,
"enc_is_bidirectional": False,
"dropout": .5,
"dropout_rnn": .25,
"dropout_cls": .5,
"activation": "ReLU",
"sa_div": 1,
"num_class": 23,
"train_mode": True,
"experiment": experiment,
}
results_path = './performance_results/{}/{}/'.format(experiment,model_name)
if not os.path.exists(results_path):
os.makedirs(results_path)
file = open(results_path + 'performance_results.csv', "w")
results = csv.writer(file)
results.writerow(["Participant", "Precision", "Recall", "F-Score", "Accuracy"])
args = copy.deepcopy(config_model)
for u in participants:
print("participant : " + u.name)
args['participant'] = u.name
if int(u.name) -1 < 0:
validation_participant = participants[-1]
else:
validation_participant = participants[int(u.name) - 1]
config_model['participant'] = u.name
X_trainA = np.empty((0,np.shape(u.rawMdataX_s1)[1], np.shape(u.rawMdataX_s1)[-1]))
y_train = np.zeros((0, 1))
for x in participants:
if x != u and x != validation_participant:
X_trainA = np.vstack((X_trainA, x.rawMdataX_s1[:]))
X_trainA = np.vstack((X_trainA, x.rawMdataX_s2[:]))
y_train = np.vstack((y_train, x.rawdataY_s1))
y_train = np.vstack((y_train, x.rawdataY_s2))
labels = np.array(u.labels)
X_testA = copy.deepcopy(u.rawMdataX_s1[:])
X_testA = np.vstack((X_testA, u.rawMdataX_s2[:]))
y_test = np.vstack((u.rawdataY_s1, u.rawdataY_s2))
X_testA = X_testA[(y_test != 23)[:,0]]
y_test = y_test[y_test != 23]
X_trainA = X_trainA[(y_train != 23)[:,0]]
y_train = y_train[y_train != 23]
X_valA = copy.deepcopy(validation_participant.rawMdataX_s1[:])
X_valA = np.vstack((X_valA, validation_participant.rawMdataX_s2[:]))
y_val = np.vstack((validation_participant.rawdataY_s1, validation_participant.rawdataY_s2))
X_valA = X_valA[(y_val != 23)[:,0]]
y_val = y_val[y_val != 23]
classes = np.unique(y_test).astype(int)
#
torch.cuda.empty_cache()
# [STEP 3] create HAR models
if torch.cuda.is_available():
model = create(model_name, config_model).cuda()
torch.backends.cudnn.benchmark = True
sys.stdout = Logger(
os.path.join(model.path_logs, f"log_main_{experiment}.txt")
)
args['batch_size']= 64
args['optimizer']= 'Adam'
args['clip_grad']= 0
args['lr']= 0.001
args['lr_decay']= 0.9
args['lr_step']= 10
args['mixup']= True
args['alpha']= 0.8
args['lr_cent']= 0.001
args['beta']= 0.003
args['print_freq']= 40
args['init_weights'] = 'orthogonal'
args['epochs'] = 100
args['class_map'] = [chr(a+97).upper() for a in list(range(23))]
# show args
print("##" * 50)
print(paint(f"Experiment: {model.experiment}", "blue"))
print(
paint(
f"[-] Using {torch.cuda.device_count()} GPU: {torch.cuda.is_available()}"
)
)
get_info_params(model)
get_info_layers(model)
print("##" * 50)
statistics_path = './statistics/LOPO/{}/participant_{}/batch_size={}/statistics.pkl'.format(
model_name,u.name, args['batch_size'])
if not os.path.exists(os.path.dirname(statistics_path)):
os.makedirs(os.path.dirname(statistics_path))
# Statistics
statistics_container = StatisticsContainer(statistics_path)
args['statistics'] = statistics_container
x_train_tensor = torch.from_numpy(np.array(X_trainA)).float()
y_train_tensor = torch.from_numpy(np.array(y_train)).long()
x_test_tensor = torch.from_numpy(np.array(X_testA)).float()
y_test_tensor = torch.from_numpy(np.array(y_test)).long()
x_val_tensor = torch.from_numpy(np.array(X_valA)).float()
y_val_tensor = torch.from_numpy(np.array(y_val)).long()
train_data = TensorDataset(x_train_tensor, y_train_tensor)
test_data = TensorDataset(x_test_tensor, y_test_tensor)
val_data = TensorDataset(x_val_tensor, y_val_tensor)
# [STEP 4] train HAR models
model_train(model, train_data, val_data, args)
# [STEP 5] evaluate HAR models
if not args['train_mode']:
args["experiment"] = "inference_LOPO"
model = create(model_name, config_model).cuda()
model_eval(model, test_data, args)
plotCNNStatistics(statistics_path, u)
plt.show()