-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwebscraper.py
47 lines (39 loc) · 1.89 KB
/
webscraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from dotenv import load_dotenv, find_dotenv
load_dotenv(find_dotenv())
from langchain.document_loaders import AsyncChromiumLoader
from langchain.document_transformers import BeautifulSoupTransformer
from langchain.chat_models import ChatOpenAI
from langchain.chains import create_extraction_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
import pprint
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
def extract(content: str, schema: dict):
return create_extraction_chain(schema=schema, llm=llm).run(content)
schema = { #needed to only extract the required information from the webpage
"properties": {
"stock_price_of_tsla": {"type": "string"},
# "team_with_the_best_NRR": {"type": "string"},
},
"required": ["stock_price_of_tsla"],
}
def llm_web_scraper(urls, schema):
# Load HTML
loader = AsyncChromiumLoader(urls)
html = loader.load()
# Transform
bs_transformer = BeautifulSoupTransformer()
docs_transformed = bs_transformer.transform_documents(html,tags_to_extract=["span"])
print("LLM extracted content:")
# Grab the first 1000 tokens of the site
splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=1000,
chunk_overlap=0)
splits = splitter.split_documents(docs_transformed)
# Process the first split
extracted_content = extract(
schema=schema, content=splits[0].page_content
)
pprint.pprint(extracted_content)
return extracted_content
urls = ["https://uk.finance.yahoo.com/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAALaSfrrCmmvpj4JCgUB_gT3wzpmX-H75KiKMhEVFn2mQDnPHrNFc1XnH3i5JINGLH2JYeMvwqqkoa6g6zeAjGFd3DupgyA6K_JQkScFmqNQ7aa264VuXTVf8pgO8MSx0GD4mFa4lK3mcOvNg1mj4XAsJjREzhGujYpyYwNPuztYk"]
extracted_content = llm_web_scraper(urls, schema=schema)