-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadaline.m
873 lines (789 loc) · 35.8 KB
/
adaline.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
%==========================================================================
% ADALINE
%==========================================================================
% LAST UPDATE
% Feb. 15 2020
% PROGRAMMER
% Raghu Pasupathy
% REFERENCE
% Hunter, Pasupathy, Raghavan, and Taaffe (2019)
% An Algorithm for Local Stochastic Optimization Over
% Integer Variables.
%==========================================================================
%
%
%==========================================================================
function [alg_path] = adaline(iseed,x_0,budget, OracleName)
% read inputs.
d = size(x_0,1);
b = min(sqrt(d),5); % max number of line searches during each iteration
% use iseed(1) to create y_seed
seed = iseed(1,1); y_seed = zeros(6,1);
for j = 1 : 6
[seed, u] = u16807d( seed );
y_seed(j,1) = floor(10^6 * u );
end
% use iseed(2) to create daseed
seed = iseed(2,1); daseed = zeros(6,1);
for j = 1 : 6
[seed, u] = u16807d( seed );
daseed(j,1) = floor(10^6 * u );
end
% use iseed(3) to create ptseed
seed = iseed(3,1); pt_seed = zeros(6,1);
for j = 1 : 6
[seed, u] = u16807d( seed );
pt_seed(j,1) = floor(10^6 * u );
end
alg_path = [[0,x_0'],find_optgap(x_0,OracleName)];
% initialize
iteration=1;
X_kminusone = x_0;
Xtilde_k = X_kminusone;
workdone = 0;
neMtilde_k = 2;
necalls = 0;
liMtilde_k = 0;
% pts_visited is a global database of visited points; it is legacy and
% it plays no role here
global pts_visited;
global budgetexceed_FLAG
pts_visited= [];
% continue until simulation budget is exhausted
while ( workdone < budget )
% update the escort sequence
lambda_k = ceil(max(2 * log(iteration),3));
budgetrem = budget - workdone;
% advance the start seed if necessary to perform independent sampling across NEs
advanceby = max(neMtilde_k,liMtilde_k);
j = 0;
while ( j < advanceby )
[y_seed, ~] = mrg32k3a(y_seed);
[daseed, ~] = mrg32k3a(daseed);
j = j + 1;
end
fromneFLAG = 0;
if iteration == 1
[~,nextxbar,~,~] = simulate(y_seed,neMtilde_k,X_kminusone,0,OracleName);
FXtilde_k = nextxbar;
Xtilde_k = X_kminusone;
end
% start with NE from the second iteration onward
if iteration > 1
[pt_seed,~, FXtilde_k, Xtilde_k,neMtilde_k,calls] = NE(pt_seed, y_seed, X_kminusone, iteration, lambda_k, budgetrem,OracleName);
fromneFLAG = 1;
necalls = calls;
workdone = workdone + calls;
% record progress
f_x = find_optgap(Xtilde_k,OracleName);
alg_path = [alg_path; [workdone, Xtilde_k',f_x]];
end
M_k = max(neMtilde_k,lambda_k);
% this DA call is substantive only in the first iteration since NE is
% not performed in the first iteration. (DA is called within LI.)
[~,~,dhat_k, Xtilde_k, daMtilde_k,dacalls,timetoperformNEFLAG] = DA(daseed,y_seed,X_kminusone, Xtilde_k,FXtilde_k,M_k,lambda_k,iteration, budget - workdone, fromneFLAG,OracleName);
workdone = workdone + dacalls;
% record progress
f_x = find_optgap(Xtilde_k,OracleName);
alg_path = [alg_path; [workdone, Xtilde_k',f_x]];
% perform LI
[~,~,X_kminusone,calls,~,totdacalls,~, N_k,liMtilde_k] = LI(daseed,y_seed, FXtilde_k, Xtilde_k, dhat_k, daMtilde_k, lambda_k, b, budget - workdone, iteration,OracleName,timetoperformNEFLAG);
workdone = workdone + calls;
% record progress
f_x = find_optgap(X_kminusone,OracleName);
alg_path = [alg_path; [workdone, X_kminusone',f_x]];
iteration = iteration + 1;
% REPORT PROGRESS
%l_inf = max(abs(X_kminusone));
%fprintf('%4d %10.3f %8d %8d %4d %8d %4d %8d \n',iteration-1, f_x, max(X_kminusone) - min(X_kminusone), necalls, neMtilde_k, N_k, totdacalls, workdone);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [pt_seed, y_seed, FXtilde_k, Xtilde_k,Mtilde_k,calls] = NE(pt_seed, y_seed, X_kminusone, iteration, lambda_k, nebudget,OracleName)
global pts_visited
global budgetexceed_FLAG
% algorithmc constant; decides when to quit NE
t_critical = 1.65;
%initialize
calls = 0;
d = size(X_kminusone,1);
ssizemin = 1;
FXtilde_k = inf;
Mtilde_k = 0;
Xtilde_k = X_kminusone;
budgetexceed_FLAG = 0;
pts_visited = [];
m = 0;
% create a data structure for storing neighbor data
% the jth object in nbrdata is a n x 2 column of data; the first column corresponds to data observed in the
% j+ direction and the second to the j- direction
for j = 1 : d
nbrdata{j} = [];
end
better_nbr_FLAG = 0; % better neighbor flag is false
% delnbdN1 is the deleted N1 neighborhood of X_kminusone; delnbdN1 is a
% matrix with at most 2d columns and exactly d rows;
[delnbdN1] = find_delnbdN1(X_kminusone,OracleName);
no_delnbdN1 = size(delnbdN1,2);
A = []; Ainfo=[];
center_data = []; % all data at the center
pseudo_der = zeros( d, 4 ); % pseudo derivatives plus and minus in columns 1,3; standard errors in 2,4
% create a pmf supported on the neighborhood; mu_klist is a matrix
% having no_delnbdN1 rows and (d+1) columns; the first d columns
% correspond to the coordinates and the last column to the probability
% mass
mu_klist(:,1:d) = delnbdN1';
mu_klist(:,(d+1)) = 1 / no_delnbdN1;
% now try to find a better nbr
while ( ( ( better_nbr_FLAG == 0 ) | ( Mtilde_k < lambda_k ) ) & ( calls < nebudget ) )
% sample a point W from the support of A
[pt_seed,W] = gendelnbd(pt_seed,mu_klist);
% sample an observation from the pair corresponding to W
feasonlycheckFLAG = 0;
deviation = round(abs(W - X_kminusone));
[~,dirindex] = max(deviation);
% simulate the pair
[~,nextxplus,~,plusfeasFLAG] = simulate(y_seed,1,X_kminusone + deviation,feasonlycheckFLAG,OracleName);
[~,nextxminus,~,minusfeasFLAG] = simulate(y_seed,1,X_kminusone - deviation,feasonlycheckFLAG,OracleName);
nbrdata{dirindex} = [nbrdata{dirindex};[nextxplus, nextxminus]];
m = size(nbrdata{dirindex},1);
% update the function values, global and local lists
if (plusfeasFLAG == 1)
[ssize, nextxbarplus,nextx2barplus] = updategloballist(X_kminusone + deviation,1,nextxplus,nextxplus^2,iteration);
[A, Ainfo] = updatelocallist(A,Ainfo,X_kminusone + deviation,ssizemin,ssize,nextxbarplus,nextx2barplus,iteration);
end
if (minusfeasFLAG == 1)
[ssize, nextxbarminus, nextx2barminus] = updategloballist(X_kminusone - deviation,1,nextxminus,nextxminus^2,iteration);
[A, Ainfo] = updatelocallist(A,Ainfo,X_kminusone - deviation,ssizemin,ssize,nextxbarminus,nextx2barminus,iteration);
end
% simulate the center if needed
Deltastar = m - size(center_data,1);
if ( Deltastar > 1 )
frpintf("Something seems to be wrong here ... CRN not in effect!");
end
if ( Deltastar > 0 )
[~,nextx,~,~] = simulate(y_seed,1,X_kminusone,feasonlycheckFLAG,OracleName);
center_data = [center_data;nextx];
[~, ~, ~] = updategloballist(X_kminusone,1,nextx,nextx^2,iteration);
end
calls = calls + ( plusfeasFLAG + minusfeasFLAG + max(Deltastar,0) );
% update the pseudo derivative estimates and their standard errors; use partial CRN
center_ssize = size( center_data, 1);
F_Xkminusone = sum( center_data( : , 1 ) ) / center_ssize;
pseudo_der_plus = (1/2) * ( ( sum(nbrdata{dirindex}(1:m,1)) / m ) - ( sum(nbrdata{dirindex}(1:m,2)) / m ) );
pseudo_der_minus = -pseudo_der_plus;
devplus = ( 1/2 ) * ( nbrdata{dirindex}(m,1) - nbrdata{dirindex}(m,2) );
devminus = -devplus;
pseudo_der(dirindex,1) = pseudo_der_plus;
pseudo_der(dirindex,2) = ( pseudo_der(dirindex,2) * ( m - 1 ) + devplus^2 ) / m;
pseudo_der(dirindex,3) = pseudo_der_minus;
pseudo_der(dirindex,4) = ( pseudo_der(dirindex,4) * ( m - 1 ) + devminus^2 ) / m;
% identify the candidate best point
if (isempty(Ainfo) == 0 )
[FXtilde_k,argminestindex] = min(Ainfo(:,d+2));
Xtilde_k = (Ainfo(argminestindex,(1:d)))';
Mtilde_k = Ainfo(argminestindex,( d + 1 ));
end
% update the directional derivatives along the 2d directions
dirindex_ssize = zeros(d,1);
varvectorplus = inf(d,1);
varvectorminus = inf(d,1);
for dirindex = 1 : d
dirindex_ssize(dirindex) = size( nbrdata{dirindex},1);
% calculate the variance
if dirindex_ssize(dirindex) > 1
varvectorplus(dirindex) = ( pseudo_der(dirindex,2) - ( pseudo_der(dirindex,1) .* pseudo_der(dirindex,1) ) ) ./ dirindex_ssize(dirindex) ;
varvectorminus(dirindex) = ( pseudo_der(dirindex,4) - ( pseudo_der(dirindex,3) .* pseudo_der(dirindex,3) ) ) ./ dirindex_ssize(dirindex) ;
end
end
Tscoresplus = max(-pseudo_der(:,1), 0) ./ ( sqrt( varvectorplus ) );
Tscoresminus = max(-pseudo_der(:,3), 0) ./ ( sqrt( varvectorminus ) );
% clean up the nans
for dirindex = 1 : d
%if varvectorplus(dirindex) == 0
% Tscoresplus(dirindex) = 0;
%end
if isnan(Tscoresplus(dirindex))
Tscoresplus(dirindex) = 0;
end
%if varvectorminus(dirindex) == 0
% Tscoresminus(dirindex) = 0;
%end
if isnan(Tscoresminus(dirindex))
Tscoresminus(dirindex) = 0;
end
end
weighTsplus = zeros(d,1);
weighTsminus = zeros(d,1);
% assign weight if not NaN
for dirder = 1 : d
if Tscoresplus(dirder) > 0
weighTsplus(dirder) = Tscoresplus(dirder);
end
if Tscoresminus(dirder) > 0
weighTsminus(dirder) = Tscoresminus(dirder);
end
end
%%%%%%%%%%%%% legacy code commented %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Xbardiffplus = eye(d); Xbardiffminus = -eye(d);
%dhat_k = ( Xbardiffminus * weighTsminus ) + ( Xbardiffplus * weighTsplus );
%if ( norm(dhat_k) == 0 )
% [maxplus,maxlocplus] = max(weighTsplus);
% [maxminus,maxlocminus] = max(weighTsminus);
% if maxplus > maxminus
% dhat_k = Xbardiffplus(:,maxlocplus);
% else
% dhat_k = Xbardiffminus(:,maxlocminus);
% end
%else
% dhat_k = dhat_k / norm( dhat_k );
%end
if ( max( max( weighTsplus ), max( weighTsminus ) ) > t_critical )
better_nbr_FLAG = 1;
else
better_nbr_FLAG = 0;
end
% update pmf
%X_kminusoneinfo = findinfo(X_kminusone);
%if isnan(dhat_k)
% fprintf("hello");
%end
mu_klist = updatepmf(mu_klist,Ainfo,center_data);
end
pts_visited= [];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [delnbdx] = find_delnbdN1(x,OracleName)
% cycle through each of the coordinates and gather all the feasible
% neighbors; delnbdx has d rows and as many columns as neighbors
d = size(x,1);
delnbdx = [];
basisvectors = eye(d);
feascheckonlyFLAG = 1;
for coord = 1:d
nextbasis =basisvectors(:,coord);
[~,~,~,feasibilityFLAG] = simulate(1,1,x+nextbasis,feascheckonlyFLAG,OracleName);
if (feasibilityFLAG == 1)
delnbdx = [delnbdx,x+nextbasis];
end
[~,~,~,feasibilityFLAG] = simulate(1,1,x-nextbasis,feascheckonlyFLAG,OracleName);
if (feasibilityFLAG == 1)
delnbdx = [delnbdx,x-nextbasis];
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [extract] = findinfo(M)
global pts_visited
extract = [];
% M is a matrix with each column corresponding to a point; M has d rows
% find the number of pts
pts = size(M,2);
if isempty(pts_visited) == 0
d = size(pts_visited,2) - 4;
% extract all the rows in the global list corresponding to M
for j = 1 : pts
x = M(:,j);
[~,iglobal,~] = intersect(pts_visited(:,1:d),x','rows');
if (isempty(iglobal) == 0)
extract = [extract; pts_visited(iglobal,:)];
end
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ssize_updated, xbar, x2bar] = updategloballist(x,ssize,xbar,x2bar,iteration)
global pts_visited
d = size(x,1);
% find the row that should be updated/populated and tackle the first d cols
% first check if the global list is empty
if ( isempty(pts_visited) == 0)
[~,iglobal,~] = intersect(pts_visited(:,1:d),x','rows');
% global list is nonempty but there exists no point match
if ( isempty(iglobal) == 1 )
iglobal = size(pts_visited,1) + 1;
pts_visited(iglobal, 1:d) = x;
pts_visited(iglobal, (d+4)) = iteration;
end
else
iglobal = 1;
pts_visited(iglobal,1:d) = x;
pts_visited(iglobal,(d+4)) = iteration;
end
% now update the rest of the columns
% obtain the existing values first
temp = pts_visited(iglobal,(d+1):(d+3));
ssize_old = temp(1); xbar_old = temp(2); x2bar_old = temp(3);
ssize_updated = ssize_old + ssize;
xbar = ( ( xbar_old * ssize_old ) + ( xbar * ssize ) ) / (ssize_old + ssize);
x2bar = ( (x2bar_old * ssize_old) + ( x2bar * ssize ) ) / (ssize_old + ssize);
pts_visited(iglobal,d+1) = ssize_updated;
pts_visited(iglobal,d+2) = xbar;
pts_visited(iglobal,d+3) = x2bar;
pts_visited(iglobal,d+4) = iteration;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [A, Ainfo] = updatelocallist(A, Ainfo,x,ssizemin,ssize,xbar,x2bar,iteration)
ilocal = [];
d = size(x,1);
% update A and Ainfo only if the sample size is larger than the minimum
% for update
if (ssize >= ssizemin )
if ( isempty(Ainfo) == 0 )
% find the row that should be updated
[~,ilocal,~] = intersect(Ainfo(:,1:d),x','rows');
end
% if there exists a row already nothing needs be done to A; just update Ainfo
% otherwise, add a row A and Ainfo
if ( isempty(ilocal) == 0 )
% update the row with the index ilocal
Ainfo(ilocal,d+1) = ssize;
Ainfo(ilocal,d+2) = xbar;
Ainfo(ilocal,d+3) = x2bar;
Ainfo(ilocal,d+4) = iteration;
elseif( ssize >= ssizemin )
% add a pt (column) to A
A = [A,x];
% add a row to Ainfo
Ainfo = [Ainfo; [x',ssize,xbar,x2bar,iteration]];
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [seed,w] = gendelnbd(seed,pmf)
% we want to generate a point from pmf
% mu_klist is a matrix having (no_delnbd1+1) rows and (d+1) columns;
% the first d columns correspond to the coordinates and the last column
% to the probability mass
% generate a point from pmf
% We need to use the alias method here for better performance.
% I am being lazy, not implementing the alias method
d = size(pmf,2) - 1;
[seed,u] = mrg32k3a( seed );
cdf = cumsum(pmf(:,d+1));
w_index = sum(cdf < u * cdf(end)) + 1;
w = (pmf(w_index,1:d))';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [iseed,u16807d]=u16807d( iseed )
%..........................................................................
% bruce schmeiser january 1989. .
% a linear congruential pseudorandom number generator .
% using constant 16807 and modulus (2**31)-1. .
% iseed = iseed*16807 (mod 2^31 -1) .
% for implementations that don't require double precision, see .
% s.k. park and k.w. miller, "random numbers generators: good .
% ones are hard to find," cacm, 31, 10 (October 1988), 1192-1201. .
% in correct implementations, starting with a seed value of 1 will .
% result in a seed value of 1043618065 on call number 10001. .
%..........................................................................
% input: iseed. integer. .
% chosen from [1,2147483646] on the first call. .
% thereafter, the value returned from the last call.
% output: iseed. integer. .
% to be used in the next call. .
% output: u16807d. real. .
% a pseudorandom number in (0,1). .
%..........................................................................
%iseed=0;
u16807d=0;
while (u16807d<=0 || u16807d>=1)
iseed = mod (iseed * 16807,2147483647);
u16807d = iseed / 2147483648;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [pmf] = updatepmfold(pmf,Ainfo, F_k)
% this is a module that computes a subjective pmf representing the "best pt" on the deleted
% nbd of a given point; the pmf is computed based on a t-statistic analogue
%
% it is assumed that Ainfo is an extract from the global visited matrix. Ainfo has
% exactly (d+4) columns; the first d columns correspond to the coordinates;
% (d+1) corresponds to the sample size, (d+2) to function estimate, (d+3)
% to raw second mean, and (d+4) to the last iteration. Ainfo has as many rows
% as there are points in the delc=eted nbd with sample size at least ssizemin.
% bestpt, as the name suggests, is the vector with the
% coordinates of the best point in M
%
% pmf is a |del. nbd| x (d+1) matrix; each row corresponds to a point in the deleted
% nbd; the (d+1)th column corresponds to a probability.
% algorithm constants
p_0 = 0.5; % the probability of an unobserved system being better
d = size(Ainfo,2) - 4;
no_delnbd = size(pmf,1);
cardAinfo = size(Ainfo,1);
% add five columns to temp; the columns d+1 through d+4 will contain
% the information from Ainfo; the column d+5 will contain the
% probability of sampling the point
pmftemp = [pmf(:,1:d),zeros(no_delnbd,1), inf(no_delnbd,1), inf(no_delnbd,1), inf(no_delnbd,1), pmf(:,(d+1))];
[~,observedindexespmftemp,observedindexesAinfo] = intersect(pmftemp(:,1:d),Ainfo(:,1:d),'rows');
pmftemp(observedindexespmftemp,(d+1):(d+4)) = Ainfo(observedindexesAinfo,(d+1):(d+4));
pmftemp(observedindexespmftemp, (d+5)) = ones(size(observedindexespmftemp,1),1);
% find the minium estimate and the argmin index in pmftemp
minest = min(pmftemp(:,d+2));
argminestindexes = find(pmftemp(:,d+2)==minest);
% find the indexes of observed suboptimal and unobserved
observedindexessuboptimalpmftemp = setdiff(observedindexespmftemp,argminestindexes);
unobservedindexespmftemp = setdiff([1:no_delnbd]', observedindexespmftemp);
% compute all the optimality gap estimates
gaps = abs(pmftemp(observedindexessuboptimalpmftemp,d+2) - minest);
% compute the scores and relprobs for the suboptimal points
sigma2s = pmftemp(observedindexessuboptimalpmftemp,(d+3)) - ( pmftemp(observedindexessuboptimalpmftemp,(d+2)) ).^2;
vars = sigma2s ./ pmftemp(observedindexessuboptimalpmftemp,(d+1));
scores = (1/2) * ( gaps.^2 ) ./ vars;
pratios = scores .^(-1);
relprobs = pratios / sum( pratios );
% compute the variance at the best point
sigma2best = pmftemp(argminestindexes,(d+3)) - ( pmftemp(argminestindexes,(d+2)) ).^2 ;
varbest = sigma2best ./ pmftemp(argminestindexes,(d+1));
varbesteq = sum( varbest .^ -1 ) .^ -1;
hbesteq = sqrt( varbesteq * sum( ( relprobs.^2 ) ./ vars ) );
% calculate the probability of sampling from the already observed group
% (exploitation probability)
E_N_betterobs = sum(max(sign(F_k - pmftemp(observedindexespmftemp,d+2)),0));
E_N_betterunobs = p_0 * ( no_delnbd - cardAinfo );
% prob_obs = ( cardAinfo / no_delnbd );
if ( E_N_betterunobs == 0 )
prob_obs = 1;
else
prob_obs = E_N_betterobs / ( E_N_betterobs + E_N_betterunobs );
%prob_obs = 0;
end
% compute the probability of sampling from each in the best group given that you are
% sampling from the already observed group
groupprob_best_given_observed = hbesteq / ( 1 + hbesteq );
indivprobs_best_given_observed = groupprob_best_given_observed * varbest / sum( varbest );
% compute the probability of sampling from each in the suboptimal group given that you are
% sampling from the already observed group
indivprobs_suboptimal_given_observed = ( 1 - groupprob_best_given_observed ) * pratios / sum( pratios );
% now re-assign the probabilities
indivprobs_best = prob_obs * indivprobs_best_given_observed;
indivprobs_suboptimal = prob_obs * indivprobs_suboptimal_given_observed;
pmftemp(observedindexessuboptimalpmftemp,d+5) = indivprobs_suboptimal;
pmftemp(argminestindexes,(d+5)) = indivprobs_best;
pmftemp(unobservedindexespmftemp,d+5) = (1-prob_obs) / size(unobservedindexespmftemp,1);
pmf = pmftemp(:,[1:d,(d+5)]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [pmf] = updatepmf(pmf,Ainfo, x0_data)
% this is a module that computes a subjective pmf representing the "best pt" on the deleted
% nbd of a given point; the pmf is computed based on a t-statistic analogue
%
% it is assumed that Ainfo is an extract from the global visited matrix. Ainfo has
% exactly (d+4) columns; the first d columns correspond to the coordinates;
% (d+1) corresponds to the sample size, (d+2) to function estimate, (d+3)
% to raw second mean, and (d+4) to the last iteration. Ainfo has as many rows
% as there are points in the delc=eted nbd with sample size at least ssizemin.
% bestpt, as the name suggests, is the vector with the
% coordinates of the best point in M
%
% pmf is a |del. nbd| x (d+1) matrix; each row corresponds to a point in the deleted
% nbd; the (d+1)th column corresponds to a probability.
% algorithm constants
p_0 = 0.5; % the probability of an unobserved system being better
d = size(Ainfo,2) - 4;
no_delnbd = size(pmf,1);
cardAinfo = size(Ainfo,1);
% get the center information
n = size(x0_data,1);
F_k = sum( x0_data ) / n;
sigmaF_k = max(sum( (x0_data .* x0_data) - ( sum(x0_data) / n )^2 ) / n,0);
% add five columns to temp; the columns d+1 through d+4 will contain
% the information from Ainfo; the column d+5 will contain the
% probability of sampling the point
pmftemp = [pmf(:,1:d),zeros(no_delnbd,1), inf(no_delnbd,1), inf(no_delnbd,1), inf(no_delnbd,1), pmf(:,(d+1))];
[~,observedindexespmftemp,observedindexesAinfo] = intersect(pmftemp(:,1:d),Ainfo(:,1:d),'rows');
pmftemp(observedindexespmftemp,(d+1):(d+4)) = Ainfo(observedindexesAinfo,(d+1):(d+4));
pmftemp(observedindexespmftemp, (d+5)) = ones(size(observedindexespmftemp,1),1);
% find the minium estimate and the argmin index in pmftemp
%minest = min(pmftemp(:,d+2));
%argminestindexes = find(pmftemp(:,d+2)==minest);
% find the indexes of observed suboptimal and unobserved
%observedindexessuboptimalpmftemp = setdiff(observedindexespmftemp,argminestindexes);
unobservedindexespmftemp = setdiff([1:no_delnbd]', observedindexespmftemp);
% compute all the optimality gap estimates
%gaps = abs(pmftemp(observedindexessuboptimalpmftemp,d+2) - minest);
% compute the Tscores for all observed points
% objdelta = ( sum(x0_data) ./ pmftemp(observedindexespmftemp,(d+1)) ) - pmftemp(observedindexespmftemp,d+2);
objdelta = F_k - pmftemp(observedindexespmftemp,d+2);
% compute the sigma^2 estimate; negative values are set to zero
sigma2s = max( pmftemp(observedindexespmftemp,(d+3)) - ( pmftemp(observedindexespmftemp,(d+2)) ).^2, 0 );
vars = ( sigma2s + sigmaF_k ) ./ pmftemp(observedindexespmftemp,(d+1));
relprobstemp = tcdf( objdelta ./ sqrt(vars), pmftemp(observedindexespmftemp,(d+1)) );
relprobs = relprobstemp / sum(relprobstemp);
% calculate the probability of sampling from the already observed group
% (exploitation probability)
E_N_betterobs = sum(max(sign(F_k - pmftemp(observedindexespmftemp,d+2)),0));
E_N_betterunobs = p_0 * ( no_delnbd - cardAinfo );
% prob_obs = ( cardAinfo / no_delnbd );
if ( E_N_betterunobs == 0 )
prob_obs = 1;
else
prob_obs = E_N_betterobs / ( E_N_betterobs + E_N_betterunobs );
%prob_obs = 0;
end
% compute the probability of sampling from each in the best group given that you are
% sampling from the already observed group
pmftemp(unobservedindexespmftemp,d+5) = (1-prob_obs) / size(unobservedindexespmftemp,1);
pmftemp(observedindexespmftemp,d+5) = prob_obs * relprobs;
pmf = pmftemp(:,[1:d,(d+5)]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [daseed, y_seed, dhat_k, better_nbr, Mtilde_k, calls,timetoperformNEFLAG] = DA(daseed, y_seed, X_k, Xtilde_k,F_k,Mtilde_k,lambda_k, iteration, dabudget, fromneFLAG,OracleName)
% this module returns a unit direction vector that is a descent direction in a probabilistic sense; it also
% returns a sample size to perform a line search along that direction
global budgetexceed_FLAG;
global pts_visited
pts_visited = [];
% initialize
calls = 0;
dhat_k = Xtilde_k - X_k;
timetoperformNEFLAG = 0;
descentfoundFLAG = 0;
d = size(X_k,1);
better_nbr = Xtilde_k;
% generate a 2d x d matrix of orthogonal basis vectors stored along rows;
% the first d rows correspond to e_j and the
% last d rows correspond to -e_{j - d} for j = d+1, d+2, ...
basisrows = zeros( (2*d), d );
seed = daseed;
% first generate (d-1) rows
for j = 1 : d
% generate a random number 1,-1
flip = 1;
[seed,u] = mrg32k3a(seed);
if ( u <= 0.5 )
flip = -1;
end
basisrows(j,j) = flip;
basisrows(d+j,j) = -flip;
end
if fromneFLAG == 1
return;
end
% construct the descent cone
j = 1;
nextpt = X_k;
currentbest = X_k;
currentbestfn = F_k;
fullbody = [];
feascheckonlyFLAG =0 ;
[~,nextxbar,nextx2bar,~] = simulate(y_seed,Mtilde_k,nextpt,feascheckonlyFLAG,OracleName);
calls = calls + Mtilde_k;
oldxbar = nextxbar;
oldx2bar = nextx2bar;
fullbodycount = 1;
dirders = []; dirders_se = [];
descentcone = [];
nearconstraintFLAG = 0;
Tscores=-Inf;
while ( ( fullbodycount < (d + 1) ) & j <= ( 2 * d ) & ( max(Tscores) <= inf | isnan(Tscores) ) )
nextpt = nextpt + basisrows(j,1:d)';
[~,nextxbartemp,nextx2bartemp,feasFLAG] = simulate(y_seed,Mtilde_k,nextpt,feascheckonlyFLAG,OracleName);
if ( feasFLAG == 1 )
nextxbar = nextxbartemp;
nextx2bar = nextx2bartemp;
fullbodycount = fullbodycount + 1;
calls = calls + Mtilde_k;
fullbody = [fullbody, basisrows(j,1:d)'];
dirders = [dirders; (nextxbar - oldxbar)];
descentcone = [descentcone; min(nextxbar - oldxbar,0)];
dirders_se = [dirders_se; sqrt(( ( nextx2bar - nextxbar^2 ) + ( oldx2bar - oldxbar^2 ) ) / Mtilde_k)];
Tscores= -descentcone ./ dirders_se;
oldxbar = nextxbar;
oldx2bar = nextx2bar;
% update the best point if needed
if nextxbar < currentbestfn
currentbest = nextpt;
currentbestfn = nextxbar;
end
else
nearconstraintFLAG = 1;
end
better_nbr = currentbest;
j = j + 1;
end
% update direction (if near a constraint go along descent cone,
% otherwise negative gradient
if min(dirders) == 0
dhat_k = [];
elseif fullbodycount == (d+1)
dhat_k = -( fullbody * dirders ) / norm( fullbody * dirders );
else
%dhat_k = -( fullbody * ( descentcone ./ dirders_se ) ) / norm( fullbody * ( descentcone ./ dirders_se ) );
dhat_k = -( fullbody * descentcone ) / norm( fullbody * descentcone );
end
%distbest = norm( Xtilde_k - currentbest );
if isempty(dhat_k) == 1
dhat_k = zeros(d,0);
timetoperformNEFLAG = 1;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [daseed,y_seed,X_k,calls,totlicalls,totdacalls,RAcalls, N_k, maxSampleSize] = LI(daseed, y_seed,FXtilde_k, Xtilde_k, dhat_k, Mtilde_k, lambda_k, b, LIbudget,iteration,OracleName, timetoperformNEFLAG)
global budgetexceed_FLAG
global pts_visited
pts_visited = [];
d = size(Xtilde_k,1);
% initialize module constants
l0 = 3 * sqrt(d);
clickbacktol = 1;
% initialize
X_k = Xtilde_k;
M_k = Mtilde_k;
F_k = FXtilde_k;
Fnext = -Inf;
step_factor = 2;
maxSampleSize = 0;
expandstepsMAX =inf;
eta = 0.9;
budgetexceed_FLAG = 0;
N_k = 0;
calls = 0;
totlicalls = 0;
totdacalls = 0;
RAcalls = 0;
if ( timetoperformNEFLAG == 1 )
return;
end
% perform at most b line searches or until local min is found
while ( (N_k < b) && timetoperformNEFLAG == 0 )
% initialize step size
l = l0;
% perform the next line search starting at W_k and with samp size M_k
% do the expansion phase
expandFLAG = 1;
expandsteps = 0;
% simulate at the start point of line search
[~,F_k,~,~] = simulate(y_seed,M_k,X_k,0,OracleName);
while ( expandFLAG == 1 && expandsteps < expandstepsMAX)
% identify a feasible Wnext
projectfeasibleFLAG = 0; multiplier = l;
while projectfeasibleFLAG == 0
Wnext = round( X_k + ( multiplier * dhat_k ) );
% check feasibility
[~,~,~,projectfeasibleFLAG] = simulate(1,1,Wnext,1,OracleName);
% warn
%if ( projectfeasibleFLAG == 0 )
% fprintf("%s \n", "Warning: suggested point is infeasble ... backtracking");
%end
multiplier = multiplier * eta;
end
% do the necessary if the point is far enough
if ( norm(X_k - Wnext ) > clickbacktol )
expandsteps = expandsteps + 1;
feascheckonlyFLAG =0;
[~,nextxbar,nextx2bar,~] = simulate(y_seed,M_k,Wnext,feascheckonlyFLAG,OracleName);
calls = calls + M_k;
totlicalls = totlicalls + M_k;
if (calls >= LIbudget)
budgetexceed_FLAG = 1;
return;
end
% update function value at candidate point; if we update global
% list first, we will only be using partial crn
%[~, nextxbar, ~] = updategloballist(Wnext,M_k,nextxbar,nextx2bar,iteration);
Fnext = nextxbar;
% update if Wnext is better
if ( Fnext < F_k )
X_k = Wnext;
F_k = Fnext;
% update step size
l = step_factor * l;
else
% stop the expansion phase
expandFLAG = 0;
end
else
% stop the expansion phase because you've reached an infeasible pt
expandFLAG = 0;
end
end
% perform the click-back
multiplier = sqrt(d);
while ( norm(X_k - Wnext ) > clickbacktol)
% identify Wnext
%Wnext = round( 0.5 * ( X_k + Wnext ) );
Wnext = round( X_k + ( multiplier * dhat_k) );
% simulate at the next point if feasible
feascheckonlyFLAG =0;
[~,nextxbar,~,~] = simulate(y_seed,M_k,Wnext,feascheckonlyFLAG,OracleName);
% do the necessary if the point is feasible
if ( nextxbar ~= inf )
calls = calls + M_k;
totlicalls = totlicalls + M_k;
if (calls >= LIbudget)
budgetexceed_FLAG = 1;
return;
end
% update function value at candidate point; if we update global
% list first, we will only be using partial crn
%[~, nextxbar, ~] = updategloballist(Wnext,M_k,nextxbar,nextx2bar,iteration);
Fnext = nextxbar;
% update if Wnext is better
if ( Fnext < F_k )
% swap Wnext and X_k
Wnexttemp = X_k;
X_k = Wnext;
Wnext = Wnexttemp;
F_k = Fnext;
end
end
multiplier = 0.9 * multiplier;
end
% update number of line searches
N_k = N_k + 1;
% get out if you have done enough line searches or the line search
% was very short
if ( ( N_k >= b ) || ( N_k >=2 & expandsteps == 1 ) )
timetoperformNEFLAG = 1;
return;
end
% perform DA for another line search
fromneFLAG = 0; Xtilde_k = X_k;
if ( (N_k < b) && timetoperformNEFLAG == 0 )
[daseed,y_seed, dhat_k, X_k, M_k, DAcalls,timetoperformNEFLAG] = DA(daseed,y_seed,X_k, Xtilde_k, F_k, M_k, lambda_k,iteration,LIbudget - calls,fromneFLAG,OracleName);
calls = calls + DAcalls;
totdacalls = totdacalls + DAcalls;
% store the max sample size along nonlinear line search
if M_k > maxSampleSize
maxSampleSize = M_k;
end
if (calls >= LIbudget)
budgetexceed_FLAG = 1;
return;
end
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [y_seed,Xtilde_k,betternbrfoundFLAG,calls] = R_A(y_seed,X_k,F_k,M_k,RAbudget,iteration)
global budgetexceed_FLAG
% initialize
countercheck = 1;
betternbrfoundFLAG = 0;
calls = 0;
Xtilde_k = X_k;
% check if there is a better neighbor of X_k at sample size M_k
d = size(X_k,1);
[delnbdX_k] = find_delnbdN1(X_k);
no_delnbdX_k = size(delnbdX_k, 2);
while( ( countercheck <= no_delnbdX_k ) && ( betternbrfoundFLAG == 0 ) )
nextpt = delnbdX_k(:,countercheck);
feascheckonlyFLAG = 0;
[~,nextxbar,nextx2bar,~] = simulate(y_seed,M_k,nextpt,feascheckonlyFLAG,OracleName);
calls = calls + M_k;
if (calls >= RAbudget)
budgetexceed_FLAG = 1;
return;
end
% update function value in the global list
[~, nextxbar, ~] = updategloballist(nextpt,M_k,nextxbar,nextx2bar,iteration);
if ( nextxbar < F_k )
betternbrfoundFLAG = 1;
Xtilde_k = nextpt;
end
countercheck = countercheck + 1;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%