-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathinterpolate_twoframe.py
70 lines (53 loc) · 2.18 KB
/
interpolate_twoframe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
from PIL import Image
import torch
from torchvision import transforms
import models
from torchvision.utils import save_image as imwrite
from torch.autograd import Variable
parser = argparse.ArgumentParser(description='Two-frame Interpolation')
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--model', type=str, default='adacofnet')
parser.add_argument('--checkpoint', type=str, default='./checkpoint/kernelsize_5/ckpt.pth')
parser.add_argument('--config', type=str, default='./checkpoint/kernelsize_5/config.txt')
parser.add_argument('--kernel_size', type=int, default=5)
parser.add_argument('--dilation', type=int, default=1)
parser.add_argument('--first_frame', type=str, default='./sample_twoframe/0.png')
parser.add_argument('--second_frame', type=str, default='./sample_twoframe/1.png')
parser.add_argument('--output_frame', type=str, default='./output.png')
transform = transforms.Compose([transforms.ToTensor()])
def to_variable(x):
if torch.cuda.is_available():
x = x.cuda()
return Variable(x)
def main():
args = parser.parse_args()
torch.cuda.set_device(args.gpu_id)
config_file = open(args.config, 'r')
while True:
line = config_file.readline()
if not line:
break
if line.find(':') == '0':
continue
else:
tmp_list = line.split(': ')
if tmp_list[0] == 'kernel_size':
args.kernel_size = int(tmp_list[1])
if tmp_list[0] == 'flow_num':
args.flow_num = int(tmp_list[1])
if tmp_list[0] == 'dilation':
args.dilation = int(tmp_list[1])
config_file.close()
model = models.Model(args)
checkpoint = torch.load(args.checkpoint, map_location=torch.device('cpu'))
model.load(checkpoint['state_dict'])
frame_name1 = args.first_frame
frame_name2 = args.second_frame
frame1 = to_variable(transform(Image.open(frame_name1)).unsqueeze(0))
frame2 = to_variable(transform(Image.open(frame_name2)).unsqueeze(0))
model.eval()
frame_out = model(frame1, frame2)
imwrite(frame_out.clone(), args.output_frame, range=(0, 1))
if __name__ == "__main__":
main()