-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathDDP_main.py
318 lines (274 loc) · 14 KB
/
DDP_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import sys
import random
import numpy as np
import argparse
import torch
import fitlog
from dataloader import DiffusionLoader
from transformers import BertTokenizer, BertConfig, RobertaTokenizer, RobertaConfig
from models.modeling_roberta import RobertaForMaskedLM
import diffusion_word_freq
from torch.optim import AdamW
from torch.nn.utils.rnn import pad_sequence
import fastNLP
from tqdm import tqdm
from sample import Categorical, WholeWordMasking
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import math
import datetime
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", default='bert-base-uncased', type=str, required=False)
parser.add_argument("--task_name", default='lm1b', type=str, required=False)
parser.add_argument("--lr", default=5e-4, type=float, required=False)
parser.add_argument("--epochs", default=3, type=int, required=False)
parser.add_argument("--batch_size", default=64, type=int, required=False)
parser.add_argument("--word_freq_lambda", default=0.3, type=float, required=False)
parser.add_argument("--num_steps", default=2048, type=int, required=False)
parser.add_argument("--eval_step_size", default=4, type=int, required=False)
parser.add_argument("--dev_size", default=5e-4, type=float, required=False)
parser.add_argument("--hybrid_lambda", default=1e-2, type=float, required=False)
parser.add_argument("--eval_steps", default=15000, type=int, required=False)
parser.add_argument("--seed", default=42, type=int, required=False)
# parser.add_argument("--device", default='cuda:0', type=str, required=False)
parser.add_argument("--logging_steps", default=1000, type=int, required=False)
parser.add_argument('--predict_x0', default=True, type=bool, required=False)
parser.add_argument("--load_step", default=-1, type=int, required=False)
parser.add_argument("--sample_strategy", default='Categorical', type=str, required=False)
parser.add_argument("--schedule", default='mutual', type=str, required=False)
parser.add_argument("--from_scratch", default=False, type=bool, required=False)
parser.add_argument("--timestep", default='none', type=str, required=False)
# parser.add_argument("--local_rank", default=-1)
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
local_rank = int(os.environ['LOCAL_RANK'])
device = torch.device("cuda", local_rank)
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl', timeout=datetime.timedelta(seconds=9600))
set_seed(args)
if args.timestep in ['none', 'token']:
from models.modeling_bert import BertForMaskedLM
elif args.timestep == 'layerwise':
from models.modeling_bert_new_timestep import BertForMaskedLM
else:
raise NotImplementedError
if dist.get_rank() == 0:
log_dir = './logs'
fitlog.set_log_dir(log_dir)
fitlog.commit(__file__)
fitlog.add_hyper(args)
fitlog.add_hyper_in_file(__file__)
save_path = f'./model_name_{args.model_name_or_path}_lr_{args.lr}_seed_{args.seed}_numsteps_{args.num_steps}_sample_{args.sample_strategy}_schedule_{args.schedule}_hybridlambda_{args.hybrid_lambda}_wordfreqlambda_{args.word_freq_lambda}_fromscratch_{args.from_scratch}_timestep_{args.timestep}_ckpts'
if args.model_name_or_path in ['bert-base-uncased', 'bert-large-uncased']:
model_cls = BertForMaskedLM
cfg_cls = BertConfig
tok_cls = BertTokenizer
elif args.model_name_or_path in ['roberta-base']:
model_cls = RobertaForMaskedLM
cfg_cls = RobertaConfig
tok_cls = RobertaTokenizer
else:
raise NotImplementedError
tokenizer = tok_cls.from_pretrained(args.model_name_or_path)
word_freq = torch.load(f'./word_freq/{args.model_name_or_path}_{args.task_name}.pt')
assert word_freq.size(0) == tokenizer.vocab_size
def word_freq_preprocess_fn(wf):
wf = wf + 1
wf = wf.log()
wf = wf / wf.max()
# range: 0 - 1
return wf
def process_fn_in_collate(wf):
return wf - wf.mean()
word_freq = word_freq_preprocess_fn(word_freq)
word_freq[tokenizer.pad_token_id] = 0. # stable training
if args.sample_strategy == 'Categorical':
sample_cls = Categorical()
elif args.sample_strategy == 'wwm':
sample_cls = WholeWordMasking(tokenizer)
else:
raise ValueError
diffusion_schedule = diffusion_word_freq.create_discrete_diffusion_schedule(args.schedule, num_steps=args.num_steps)
diffusion_instance = diffusion_word_freq.MaskDiffusion(
dim=tokenizer.vocab_size,
schedule=diffusion_schedule,
tokenizer=tokenizer,
sample_cls=sample_cls,
word_freq_lambda=args.word_freq_lambda,
device=device
)
if args.load_step > 0:
ckpt = torch.load(os.path.join(save_path, f'{args.load_step}.th'))
cfg = cfg_cls.from_pretrained(args.model_name_or_path)
cfg.overall_timestep = diffusion_instance.num_steps
if args.from_scratch:
model = model_cls(cfg).to(device)
elif args.load_step <= 0:
model = model_cls.from_pretrained(args.model_name_or_path, config=cfg).to(device)
else:
model = model_cls(cfg).to(device)
model.load_state_dict(ckpt['model'])
model = DDP(model, device_ids=[local_rank], output_device=local_rank)
optimizer = AdamW(model.parameters(), lr=args.lr)
warmup_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda n: n / 10000. + 1e-3 if n < 10000 else 100. / math.sqrt(n))
train_data, test_data = DiffusionLoader(tokenizer=tokenizer).my_load(task_name='lm1b', splits=['train', 'test'])
train_data, dev_data = train_data.train_test_split(test_size=args.dev_size).values()
logger = fastNLP.logger
if dist.get_rank() == 0:
print('# of train data: {}'.format(len(train_data)))
print('Example:')
print(train_data[0])
print('\n# of dev data: {}'.format(len(dev_data)))
print('Example:')
print(dev_data[0])
print('\n# of test data: {}'.format(len(test_data)))
print('Example:')
print(test_data[0])
def collate_fn(batch_input):
input_ids = [torch.tensor(d['input_ids']) for d in batch_input]
attention_mask = [torch.tensor(d['attention_mask']) for d in batch_input]
word_freq_logits = [process_fn_in_collate(word_freq.gather(0, torch.tensor(d['input_ids']))) for d in batch_input]
input_ids = pad_sequence(input_ids, batch_first=True)
attention_mask = pad_sequence(attention_mask, batch_first=True)
word_freq_logits = pad_sequence(word_freq_logits, batch_first=True)
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'word_freq_logits': word_freq_logits
}
train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
dev_sampler = torch.utils.data.distributed.DistributedSampler(dev_data)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, collate_fn=collate_fn, num_workers=4, pin_memory=True, sampler=train_sampler)
dev_loader = torch.utils.data.DataLoader(dev_data, batch_size=args.batch_size * 2, collate_fn=collate_fn, num_workers=4, pin_memory=True, sampler=dev_sampler)
model.train()
cls = torch.full((1, 1), fill_value=tokenizer.cls_token_id, device=device)
sep = torch.full((1, 1), fill_value=tokenizer.sep_token_id, device=device)
att_ones = torch.ones((1, 1), device=device)
att_zeros = torch.zeros((1, 1), device=device)
if args.timestep == 'none':
def denoise_fn(targets, timestep, attention_mask):
assert len(targets.size()) == 2 # bsz * seqlen
bsz = targets.size(0)
targets = torch.cat((cls.repeat(bsz, 1), targets, sep.repeat(bsz, 1)), dim=1)
attention_mask = torch.cat((att_ones.repeat(bsz, 1), attention_mask, att_zeros.repeat(bsz, 1)), dim=1)
return model(input_ids=targets, timestep=timestep - 1, attention_mask=attention_mask)['logits'][:, 1:-1, :]
elif args.timestep == 'token':
def denoise_fn(targets, timestep, attention_mask):
assert len(targets.size()) == 2 # bsz * seqlen
bsz = targets.size(0)
targets = torch.cat((
cls.repeat(bsz, 1),
torch.full((bsz, 1), fill_value=timestep.item() + 110, device=device),
targets,
sep.repeat(bsz, 1)
), dim=1)
attention_mask = torch.cat((att_ones.repeat(bsz, 2), attention_mask, att_zeros.repeat(bsz, 1)), dim=1)
return model(input_ids=targets, timestep=timestep - 1, attention_mask=attention_mask)['logits'][:, 2:-1, :]
elif args.timestep == 'layerwise':
def denoise_fn(targets, timestep, attention_mask):
assert len(targets.size()) == 2 # bsz * seqlen
bsz = targets.size(0)
targets = torch.cat((
cls.repeat(bsz, 1),
targets,
sep.repeat(bsz, 1)
), dim=1)
attention_mask = torch.cat((att_ones.repeat(bsz, 1), attention_mask, att_zeros.repeat(bsz, 1)), dim=1)
return model(input_ids=targets, timestep=timestep - 1, attention_mask=attention_mask)['logits'][:, 1:-1, :]
else:
raise NotImplementedError
if dist.get_rank() == 0:
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
best_dev_elbo = float('inf')
train_loss = .0
nan_count = 0
loss_list = [torch.tensor(0., device=device) for _ in range(dist.get_world_size())]
for epoch in range(args.epochs):
train_loader.sampler.set_epoch(epoch)
dev_loader.sampler.set_epoch(epoch)
for i, batch in enumerate(tqdm(train_loader), args.load_step + 1):
metrics = diffusion_word_freq.compute_kl_reverse_process(
batch['input_ids'].to(device),
diffusion_instance.sample_t(),
denoise_fn=denoise_fn,
diffusion=diffusion_instance,
target_mask=batch['attention_mask'].to(device),
hybrid_lambda=args.hybrid_lambda,
predict_x0=args.predict_x0,
word_freq_logits=batch['word_freq_logits'].to(device)
)
loss = metrics['loss'] / args.batch_size
dist.all_gather(loss_list, loss)
if torch.stack(loss_list).isnan().any():
nan_count += 1
logger.warning(f'NaN encountered {nan_count} times')
continue
train_loss += loss.item()
loss.backward()
torch.nn.utils.clip_grad_value_(model.parameters(), 5)
optimizer.step()
model.zero_grad()
optimizer.zero_grad()
warmup_scheduler.step()
if dist.get_rank() == 0:
if i % args.logging_steps == args.logging_steps - 1:
logger.info(f'Loss at step {i} is {train_loss / args.logging_steps}')
fitlog.add_loss(train_loss / args.logging_steps, name='train_loss', step=i)
train_loss = .0
if i % args.eval_steps == args.eval_steps - 1:
nan_count_in_dev = 0
model.eval()
dev_metrics = {
'elbo': .0,
'elbo_in_bits_per_dim': .0,
# 'likelihood': .0,
# 'prior': .0,
}
with torch.no_grad():
for dev_batch in dev_loader:
batch_dev_metrics = diffusion_word_freq.discrete_diffusion_elbo(
dev_batch['input_ids'].to(device),
denoise_fn=denoise_fn,
diffusion=diffusion_instance,
target_mask=dev_batch['attention_mask'].to(device),
normalize_without_padding=True,
eval_step_size=args.eval_step_size,
word_freq_logits=dev_batch['word_freq_logits'].to(device),
device=device
)
if dist.get_rank() == 0:
m = [torch.tensor(0., device=device) for _ in range(dist.get_world_size())]
for name in dev_metrics.keys():
dist.gather(batch_dev_metrics[name].squeeze(), m)
temp = sum(m)
if not torch.isnan(temp):
dev_metrics[name] += temp
else:
nan_count_in_dev += 1
logger.warning(f'NaN encountered {nan_count_in_dev} times in dev')
else:
for name in dev_metrics.keys():
dist.gather(batch_dev_metrics[name].squeeze())
if dist.get_rank() == 0:
for name in dev_metrics.keys():
dev_metrics[name] /= len(dev_data)
fitlog.add_metric(dev_metrics[name], name=name, step=i)
if dev_metrics['elbo_in_bits_per_dim'] <= best_dev_elbo:
best_dev_elbo = dev_metrics['elbo_in_bits_per_dim']
fitlog.add_best_metric(dev_metrics['elbo_in_bits_per_dim'], name='dev_elbo_in_bits_per_dim')
torch.save({
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'warmup_scheduler': warmup_scheduler.state_dict(),
}, f'./{save_path}/best({i}).th')
model.train()