-
Notifications
You must be signed in to change notification settings - Fork 0
/
pipeline_sdxl.py
510 lines (417 loc) · 20.9 KB
/
pipeline_sdxl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import inspect
import warnings
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from packaging import version
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import StableDiffusionXLPipeline
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.utils import deprecate
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
import numpy as np
from torch.nn import functional as F
from utils.magnet_utils import *
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class MagnetSDXLPipeline(StableDiffusionXLPipeline):
def prepare_candidates(self, offline_file=None, save_path=None, obj_file="./bank/candidates.txt"):
self.magnet_embeddings = None
self.parser = stanza.Pipeline(lang='en', processors='tokenize,pos,constituency', download_method=None)
with open(obj_file, "r") as f:
candidates = f.read().splitlines()
self.candidates = np.array(candidates)
if offline_file is None:
with torch.no_grad():
self.candidate_embs = torch.cat([self.get_eot(w, -1) for w in candidates], dim=1)[0]
self.candidate_embs = self.candidate_embs.to("cuda")
if save_path is not None:
torch.save(self.candidate_embs, save_path)
else:
self.candidate_embs = torch.load(offline_file).to("cuda")
print("Finished loading candidate embeddings with shape:", self.candidate_embs.shape)
def get_magnet_direction(
self,
prompt,
pairs=None,
alphas=None,
betas=None,
K=5,
alpha_lambda=0.6,
use_neg=True,
use_pos=True,
neighbor="feature"
):
assert len(self.candidates) == self.candidate_embs.shape[0]
prompt = check_prompt(prompt)
# print(prompt)
text_inds = self.tokenizer.encode(prompt)
self.eot_index = len(text_inds) - 1
if pairs is None:
pairs = get_pairs(prompt, self.parser)
# print('Extracted Dependency : \n', pairs)
prompt_embeds, eid = self.get_prompt_embeds_with_eid(prompt)
# print(alphas, betas)
N_pairs = len(pairs)
for pid, pair in enumerate(pairs):
# if pair["concept"] == pair["subject"]: continue
# print(pair)
cur_span = get_span(prompt, pair['concept'])
cur_concept_index = get_word_inds(prompt, cur_span, tokenizer=self.tokenizer, text_inds=text_inds)
concept_embeds, concept_eid = self.get_prompt_embeds_with_eid(pair['concept'])
omega = F.cosine_similarity(concept_embeds[:, concept_eid], concept_embeds[:, -1])
if use_pos:
if alphas is None:
alpha = float(torch.exp(alpha_lambda-omega))
else:
alpha = alphas[pid]
else:
alpha = 0
if use_neg:
if betas is None:
beta = float(1-omega**2)
else:
beta = betas[pid]
else:
beta = 0
if neighbor == "feature":
center = self.get_eot(pair["subject"], -1)
if pair["subject"] not in list(self.candidates):
candidates = np.array(list(self.candidates) + [pair["subject"]])
candidate_embs = torch.cat([self.candidate_embs, center.squeeze(1)], dim=0)
else:
candidates = self.candidates
candidate_embs = self.candidate_embs
sim = F.cosine_similarity(center[0], candidate_embs)
rank = torch.argsort(sim, descending=True).cpu()
if K == 1:
pos_ety = np.array([candidates[rank[:K]]])
else:
pos_ety = candidates[rank[:K]]
elif neighbor == "bert":
masked_prompt = " ".join([pair['concept'], 'and a [MASK].'])
pos_ety = []
outputs = self.unmasker(masked_prompt, top_k=5)
for output in outputs:
word = output['token_str'].strip('#')
pos_ety.append(word)
# print(pos_ety)
uncond_embeds = [self.get_eot(pos, -1) for pos in pos_ety]
# positive binding vectors
positive = [pair["concept"].replace(pair["subject"], ety) for ety in pos_ety]
positive_embeds = [self.get_eot(pos, -1) for pos in positive]
pull_direction = [positive_embed - uncond_embed for positive_embed, uncond_embed in zip(positive_embeds, uncond_embeds)]
pull_direction = torch.cat(pull_direction, dim=1).mean(dim=1).squeeze()
prompt_embeds[:, cur_concept_index[-1]] += pull_direction * alpha
# negative binding vectors
for outid, outpair in enumerate(pairs):
if outid == pid or outpair["concept"] == outpair["subject"]: continue
negative = [outpair["concept"].replace(outpair["subject"], ety) for ety in pos_ety]
negative_embeds = [self.get_eot(neg, -1) for neg in negative] # (1, n, 768)
push_direction = [negative_embed - uncond_embed for uncond_embed, negative_embed in zip(uncond_embeds, negative_embeds)] # (768)
push_direction = torch.cat(push_direction, dim=1).mean(dim=1).squeeze()
prompt_embeds[:, cur_concept_index[-1]] -= push_direction * beta
self.magnet_embeddings = prompt_embeds.clone().detach()
def get_eot(self, _prompt, tok_no=0, tok_num=1):
# eot_no = -1: first word before eot
# eot_no = 0: first eot
_prompt_embs, _eot_id = self.get_prompt_embeds_with_eid(_prompt)
_target = _prompt_embs[:, _eot_id+tok_no:_eot_id+tok_no+tok_num]
return _target
@torch.no_grad()
def get_prompt_embeds(self, prompt):
# Define tokenizers and text encoders
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
text_encoders = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
prompt_2 = prompt
prompts = [prompt, prompt_2]
prompt_embeds_list = []
for _prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
prompt_ids = tokenizer(
_prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
).input_ids.to(self.device)
prompt_embeds = text_encoder(prompt_ids, output_hidden_states=True,).hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
return prompt_embeds
@torch.no_grad()
def get_prompt_embeds_with_eid(self, prompt):
# Define tokenizers and text encoders
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
text_encoders = (
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
)
prompt_2 = prompt
prompts = [prompt, prompt_2]
prompt_embeds_list = []
eot_index = None
for _prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
if not eot_index:
check_prompt_ids = tokenizer(
_prompt,
padding=False,
truncation=True,
return_tensors="pt"
).input_ids.to(self.device)
eot_index = check_prompt_ids.shape[1] - 1
prompt_ids = tokenizer(
_prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
).input_ids.to(self.device)
prompt_embeds = text_encoder(prompt_ids, output_hidden_states=True,).hidden_states[-2]
prompt_embeds_list.append(prompt_embeds)
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
return prompt_embeds, eot_index
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
denoising_end: Optional[float] = None,
guidance_scale: float = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Optional[Tuple[int, int]] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
):
# 0. Default height and width to unet
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Prepare added time ids & embeddings
add_text_embeds = pooled_prompt_embeds
add_time_ids = self._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
)
if negative_original_size is not None and negative_target_size is not None:
negative_add_time_ids = self._get_add_time_ids(
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
)
else:
negative_add_time_ids = add_time_ids
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
# Apply Magnet
if self.magnet_embeddings is not None:
seq_len = self.magnet_embeddings.shape[1]
prompt_embeds = prompt_embeds[:, :seq_len]
prompt_embeds[batch_size * num_images_per_prompt:] = self.magnet_embeddings
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
# 8. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
# 7.1 Apply denoising_end
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if not output_type == "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.upcast_vae()
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
else:
image = latents
if not output_type == "latent":
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)