This repository has been archived by the owner on Jan 7, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathclassify-hangul.py
executable file
·92 lines (75 loc) · 3.03 KB
/
classify-hangul.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python
import argparse
import io
import os
import sys
import tensorflow as tf
SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__))
# Default paths.
DEFAULT_LABEL_FILE = os.path.join(
SCRIPT_PATH, '../labels/2350-common-hangul.txt'
)
DEFAULT_GRAPH_FILE = os.path.join(
SCRIPT_PATH, '../saved-model/optimized_hangul_tensorflow.pb'
)
def read_image(file):
"""Read an image file and convert it into a 1-D floating point array."""
file_content = tf.read_file(file)
image = tf.image.decode_jpeg(file_content, channels=1)
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image = tf.reshape(image, (1, 64*64))
return image
def classify(args):
"""Classify a character.
This method will import the saved model from the given graph file, and will
pass in the given image pixels as input for the classification. The top
five predictions will be printed.
"""
labels = io.open(args.label_file,
'r', encoding='utf-8').read().splitlines()
if not os.path.isfile(args.image):
print('Error: Image %s not found.' % args.image)
sys.exit(1)
# Load graph and parse file.
with tf.gfile.GFile(args.graph_file, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(
graph_def,
input_map=None,
return_elements=None,
name='hangul-model',
producer_op_list=None
)
# Get relevant nodes.
x = graph.get_tensor_by_name('hangul-model/input:0')
y = graph.get_tensor_by_name('hangul-model/output:0')
keep_prob = graph.get_tensor_by_name('hangul-model/keep_prob:0')
image = read_image(args.image)
sess = tf.InteractiveSession()
image_array = sess.run(image)
sess.close()
with tf.Session(graph=graph) as graph_sess:
predictions = graph_sess.run(y, feed_dict={x: image_array,
keep_prob: 1.0})
prediction = predictions[0]
# Get the indices that would sort the array, then only get the indices that
# correspond to the top 5 predictions.
sorted_indices = prediction.argsort()[::-1][:5]
for index in sorted_indices:
label = labels[index]
confidence = prediction[index]
print('%s (confidence = %.5f)' % (label, confidence))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('image', type=str,
help='Image to pass to model for classification.')
parser.add_argument('--label-file', type=str, dest='label_file',
default=DEFAULT_LABEL_FILE,
help='File containing newline delimited labels.')
parser.add_argument('--graph-file', type=str, dest='graph_file',
default=DEFAULT_GRAPH_FILE,
help='The saved model graph file to use for '
'classification.')
classify(parser.parse_args())