diff --git a/src/ccompass/CCMPS.py b/src/ccompass/CCMPS.py index 1e847c6..7ebbc70 100644 --- a/src/ccompass/CCMPS.py +++ b/src/ccompass/CCMPS.py @@ -2438,9 +2438,9 @@ def tp_add(window, tp_paths, tp_tables, tp_indata, tp_pos, tp_identifiers): data = pd.read_csv(filename, sep="\t", header=0) data = data.replace("NaN", np.nan) data = data.replace("Filtered", np.nan) - data = data.applymap(convert_to_float) + data = data.map(convert_to_float) - rows_with_float = data.applymap(is_float).any(axis=1) + rows_with_float = data.map(is_float).any(axis=1) data = data[rows_with_float] colnames = data.columns.values.tolist() @@ -2953,13 +2953,13 @@ def create_markerprofiles(fract_data, key, fract_info, marker_list): for condition in profiles: profiles[condition] = pd.merge( profiles[condition], - fract_info[key].astype(str).applymap(str.upper), + fract_info[key].astype(str).map(str.upper), left_index=True, right_index=True, ) - # profiles[condition] = pd.merge(profiles[condition], fract_info[key].applymap(str.upper), left_index = True, right_index = True) + # profiles[condition] = pd.merge(profiles[condition], fract_info[key].map(str.upper), left_index = True, right_index = True) - # fract_info_upper = fract_info[key].applymap(str.upper) + # fract_info_upper = fract_info[key].map(str.upper) fract_marker[condition] = ( pd.merge( profiles[condition], diff --git a/src/ccompass/MOA.py b/src/ccompass/MOA.py index 62064b5..b2d849d 100644 --- a/src/ccompass/MOA.py +++ b/src/ccompass/MOA.py @@ -165,7 +165,7 @@ def stats_proteome(learning_xyz, NN_params, fract_data, fract_conditions): ### ## add TPA: ### if mode == 'deep': ### TPA_list = [] - ### tp_nontrans = tp_data[condition].applymap(lambda x: 2 ** x) + ### tp_nontrans = tp_data[condition].map(lambda x: 2 ** x) ### for replicate in tp_data[condition]: ### TPA_list.append(tp_nontrans[replicate]) ### combined_TPA = pd.concat(TPA_list, axis = 1) @@ -403,7 +403,7 @@ def stats_proteome(learning_xyz, NN_params, fract_data, fract_conditions): cc_sums = results[condition]["metrics"][cc_cols].sum( axis=1, skipna=True ) - # cc_sums = results[condition]['metrics'][cc_cols].applymap(safe_sum) + # cc_sums = results[condition]['metrics'][cc_cols].map(safe_sum) results[condition]["metrics"][cc_cols] = results[condition]["metrics"][ cc_cols ].div(cc_sums, axis=0) @@ -799,7 +799,7 @@ def class_comparison(tp_data, fract_conditions, results, comparison): ## add TPA: TPA_list = [] TPA_list = [] - tp_nontrans = tp_data[condition].applymap(lambda x: 2**x) + tp_nontrans = tp_data[condition].map(lambda x: 2**x) for replicate in tp_data[condition]: TPA_list.append(tp_nontrans[replicate]) combined_TPA = pd.concat(TPA_list, axis=1) diff --git a/src/ccompass/MOP_stats.py b/src/ccompass/MOP_stats.py index 174458b..04822e4 100644 --- a/src/ccompass/MOP_stats.py +++ b/src/ccompass/MOP_stats.py @@ -98,7 +98,7 @@ def stats_exec3( ## add TPA: if mode == "deep": TPA_list = [] - tp_nontrans = tp_data[condition].applymap(lambda x: 2**x) + tp_nontrans = tp_data[condition].map(lambda x: 2**x) for replicate in tp_data[condition]: TPA_list.append(tp_nontrans[replicate]) combined_TPA = pd.concat(TPA_list, axis=1) @@ -331,7 +331,7 @@ def stats_exec3( cc_sums = results[condition]["metrics"][cc_cols].sum( axis=1, skipna=True ) - # cc_sums = results[condition]['metrics'][cc_cols].applymap(safe_sum) + # cc_sums = results[condition]['metrics'][cc_cols].map(safe_sum) results[condition]["metrics"][cc_cols] = results[condition]["metrics"][ cc_cols ].div(cc_sums, axis=0) @@ -500,7 +500,7 @@ def stats_exec2(learning_xyz, NN_params, tp_data, fract_marker): # add TPA: TPA_list = [] - tp_nontrans = tp_data[condition].applymap(lambda x: 2**x) + tp_nontrans = tp_data[condition].map(lambda x: 2**x) for replicate in tp_data[condition]: TPA_list.append(tp_nontrans[replicate]) diff --git a/src/ccompass/TPP.py b/src/ccompass/TPP.py index d3b8492..2686a35 100644 --- a/src/ccompass/TPP.py +++ b/src/ccompass/TPP.py @@ -73,8 +73,8 @@ def create_dataset( ) replicate += 1 - if data_new.applymap(lambda x: "," in str(x)).any().any(): - data_new = data_new.applymap( + if data_new.map(lambda x: "," in str(x)).any().any(): + data_new = data_new.map( lambda x: str(x).replace(",", ".") if isinstance(x, str) else x ) data_new = data_new.apply(pd.to_numeric, errors="coerce")