-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsteadystateProblem.cpp
134 lines (102 loc) · 4.43 KB
/
steadystateProblem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include "steadystateProblem.h"
#include <parpecommon/hdf5Misc.h>
#include <parpeoptimization/optimizationOptions.h>
#include <parpecommon/misc.h>
#include "wrapfunctions.h"
#include <cassert>
#include <cstring>
#include <iostream>
#include <amici/hdf5.h>
ExampleSteadystateProblem::ExampleSteadystateProblem(const std::string &dataFileName)
{
[[maybe_unused]] auto lock = parpe::hdf5MutexGetLock();
file.openFile(dataFileName, H5F_ACC_RDONLY);
auto optimizationOptions = OptimizationProblem::getOptimizationOptions();
optimizationOptions.optimizer = parpe::optimizerName::OPTIMIZER_IPOPT;
optimizationOptions.printToStdout = true;
optimizationOptions.maxOptimizerIterations = 100;
OptimizationProblem::setOptimizationOptions(optimizationOptions);
cost_fun_ = std::make_unique<ExampleSteadystateGradientFunction>(file.getId());
}
void ExampleSteadystateProblem::fillInitialParameters(gsl::span<double> buffer) const
{
std::fill(buffer.begin(), buffer.end(), 0.0);
}
void ExampleSteadystateProblem::fillParametersMin(gsl::span<double> buffer) const
{
std::fill(buffer.begin(), buffer.end(), -5.0);
}
void ExampleSteadystateProblem::fillParametersMax(gsl::span<double> buffer) const
{
std::fill(buffer.begin(), buffer.end(), 5.0);
}
void ExampleSteadystateGradientFunction::requireSensitivities(
bool sensitivitiesRequired) const {
if (sensitivitiesRequired) {
solver->setSensitivityOrder(amici::SensitivityOrder::first);
solver->setSensitivityMethod(amici::SensitivityMethod::forward);
} else {
solver->setSensitivityOrder(amici::SensitivityOrder::none);
solver->setSensitivityMethod(amici::SensitivityMethod::none);
}
}
void ExampleSteadystateGradientFunction::setupUserData(int conditionIdx) {
hsize_t m = 0, n = 0;
[[maybe_unused]] auto lock = parpe::hdf5MutexGetLock();
model->setTimepoints(amici::hdf5::getDoubleDataset2D(fileId, "/parameters/t", m, n));
// set model constants
readFixedParameters(conditionIdx);
model->setParameterScale(amici::ParameterScaling::log10);
requireSensitivities(true);
model->requireSensitivitiesForAllParameters();
solver->setMaxSteps(10000);
}
void ExampleSteadystateGradientFunction::setupExpData(int conditionIdx) {
edata = std::make_unique<amici::ExpData>(*model);
readMeasurement(conditionIdx);
}
std::vector<std::string> ExampleSteadystateGradientFunction::getParameterIds() const
{
return parpe::hdf5Read1dStringDataset(fileId, "/parameters/parameterNames");
}
void ExampleSteadystateGradientFunction::readFixedParameters(int conditionIdx) const {
std::vector<double> k(model->nk());
parpe::hdf5Read2DDoubleHyperslab(fileId, "/fixedParameters/k", k.size(),
1, 0, conditionIdx, k);
model->setFixedParameters(k);
}
void ExampleSteadystateGradientFunction::readMeasurement(int conditionIdx) const {
edata->setObservedData(
parpe::hdf5Get3DDoubleHyperslab(fileId, "/measurements/y",
1, edata->nt(), edata->nytrue(),
conditionIdx, 0, 0));
edata->setObservedDataStdDev(
parpe::hdf5Get3DDoubleHyperslab(fileId, "/measurements/ysigma",
1, edata->nt(), edata->nytrue(),
conditionIdx, 0, 0));
}
ExampleSteadystateGradientFunction::ExampleSteadystateGradientFunction(hid_t fileId)
: fileId(fileId), model(amici::generic_model::getModel()), solver(model->getSolver())
{
setupUserData(0);
setupExpData(0);
}
parpe::FunctionEvaluationStatus ExampleSteadystateGradientFunction::evaluate(
gsl::span<const double> parameters, double &fval,
gsl::span<double> gradient, parpe::Logger * /*logger*/,
double * /*cpuTime*/) const
{
model->setParameters(std::vector<double>(parameters.begin(), parameters.end()));
// printArray(parameters, udata->np);printf("\n");
requireSensitivities(!gradient.empty());
auto rdata = amici::runAmiciSimulation(*solver, edata.get(), *model);
fval = -rdata->llh;
if (!gradient.empty())
for (int i = 0; i < model->np(); ++i)
gradient[i] = -rdata->sllh[i];
return rdata->status == 0 ? parpe::functionEvaluationSuccess : parpe::functionEvaluationFailure;
}
int ExampleSteadystateGradientFunction::numParameters() const
{
return model->np();
}