forked from april-tools/e4selflearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cml.py
455 lines (434 loc) · 16.2 KB
/
train_cml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import argparse
import json
import pickle
import shutil
import typing as t
from time import time
import torch
import wandb
import xgboost as xgb
from sklearn.impute import SimpleImputer
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import log_loss
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import roc_auc_score
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from torch.utils.data import DataLoader
from tqdm import tqdm
from timebase.data.reader import get_datasets
from timebase.data.static import *
from timebase.metrics import secondary_metrics_subjects_get_inputs
from timebase.metrics import subject_accuracy
from timebase.models.models import Classifier
from timebase.models.models import get_models
from timebase.utils import utils
from train_ann import load_pre_trained_parameters
def load(d: t.Dict[str, torch.Tensor], device: torch.device):
"""Load values in dictionary d to device"""
return {k: v.to(device) for k, v in d.items()}
@torch.inference_mode()
def get_embeddings(
args,
ds: DataLoader,
classifier: Classifier,
verbose: int = 1,
):
device = args.device
targets, representations, subject_ids, labels, metadata = [], [], [], {}, {}
classifier.to(device)
classifier.train(False)
for batch in tqdm(ds, disable=verbose == 0):
inputs = load(batch["data"], device=device)
outputs_classifier, representation = classifier(inputs)
label = load(batch["label"], device=device)
target = batch["target"].to(device)
subject_id = batch["subject_id"].to(device)
utils.update_dict(target=labels, source=label)
utils.update_dict(target=metadata, source=batch["metadata"])
targets.append(target)
subject_ids.append(subject_id)
representations.append(representation)
res = {
"labels": {k: torch.cat(v, dim=0).cpu().numpy() for k, v in labels.items()},
"metadata": {k: torch.cat(v, dim=0).cpu().numpy() for k, v in metadata.items()},
"targets": torch.concat(targets, dim=0).cpu().numpy(),
"subject_ids": torch.concat(subject_ids, dim=0).cpu().numpy(),
"representations": torch.concat(representations, dim=0).cpu().numpy(),
}
res["metadata"]["recording_id"] = np.vectorize(
lambda x: {v: k for k, v in ds.dataset.recording_id_str_to_num.items()}.get(
x, x
)
)(res["metadata"]["recording_id"])
return res
def get_splits(args, datasets: t.Dict):
if not args.path2featurizer:
# Find columns that contain all np.nan values
X_train = datasets["x_train"].values
y_train = datasets["targets_train"]
X_val = datasets["x_val"].values
y_val = datasets["targets_val"]
X_test = datasets["x_test"].values
y_test = datasets["targets_test"]
all_nan_columns = np.where(np.all(np.isnan(X_train), axis=0) == True)[0]
if len(all_nan_columns):
# Drop columns with all np.nan values
X_train = datasets["x_train"].values[:, ~all_nan_columns]
X_val = datasets["x_val"].values[:, ~all_nan_columns]
X_test = datasets["x_test"].values[:, ~all_nan_columns]
# Set non-finite values to np.nan
X_train = np.where(np.isinf(X_train), np.nan, X_train)
X_val = np.where(np.isinf(X_val), np.nan, X_val)
X_test = np.where(np.isinf(X_test), np.nan, X_test)
# Mean value imputation
imp = SimpleImputer(missing_values=np.nan, strategy="mean")
X_train = imp.fit_transform(X_train)
X_val = imp.transform(X_val)
X_test = imp.transform(X_test)
# Scale data
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.transform(X_val)
X_test = scaler.transform(X_test)
else:
train_ds, val_ds, test_ds = datasets
classifier, _ = get_models(args, summary=None)
load_pre_trained_parameters(
args, classifier=classifier, path2pretraining_res=args.path2featurizer
)
datasets = {}
res = get_embeddings(
args,
ds=train_ds,
classifier=classifier,
)
X_train, y_train = (
# np.reshape(
# res["representations"], newshape=(len(res["representations"]), -1)
# ),
np.mean(res["representations"], axis=-2),
res["targets"],
)
res = get_embeddings(
args,
ds=val_ds,
classifier=classifier,
)
(
X_val,
y_val,
datasets["labels_val"],
datasets["metadata_val"],
datasets["subject_ids_val"],
) = (
# np.reshape(
# res["representations"], newshape=(len(res["representations"]), -1)
# ),
np.mean(res["representations"], axis=-2),
res["targets"],
res["labels"],
res["metadata"],
res["subject_ids"],
)
res = get_embeddings(
args,
ds=test_ds,
classifier=classifier,
)
(
X_test,
y_test,
datasets["labels_test"],
datasets["metadata_test"],
datasets["subject_ids_test"],
) = (
# np.reshape(
# res["representations"], newshape=(len(res["representations"]), -1)
# ),
np.mean(res["representations"], axis=-2),
res["targets"],
res["labels"],
res["metadata"],
res["subject_ids"],
)
return datasets, X_train, y_train, X_val, y_val, X_test, y_test
def main(args, wandb_sweep: bool = False):
utils.set_random_seed(args.seed, verbose=args.verbose)
if args.clear_output_dir and os.path.exists(args.output_dir):
shutil.rmtree(args.output_dir)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
if args.use_wandb:
utils.wandb_init(args, wandb_sweep=wandb_sweep)
# 0: Self-supervised pre-training, 1: Fine-tuning, 2: Read-out, 3: NN
# training, 4: CML (XGBoost), 9: Post-hoc analyses
args.task_mode = 4
utils.get_device(args)
datasets = get_datasets(args)
utils.save_args(args)
datasets, X_train, y_train, X_val, y_val, X_test, y_test = get_splits(
args, datasets=datasets
)
match args.learner:
case "xgboost":
classifier = xgb.XGBClassifier(
random_state=args.seed,
eval_metric="logloss",
objective="binary:logistic",
n_estimators=args.n_estimators,
learning_rate=args.learning_rate,
max_depth=args.max_depth,
subsample=args.subsample,
colsample_bytree=args.colsample_bytree,
reg_alpha=args.reg_alpha,
reg_lambda=args.reg_lambda,
min_child_weight=args.min_child_weight,
gamma=args.gamma,
)
case "svm":
classifier = SVC(
random_state=args.seed,
C=args.C,
kernel=args.kernel,
degree=args.degree,
gamma=args.gamma,
probability=True,
)
case "knn":
classifier = KNeighborsClassifier(
n_neighbors=args.n_neighbors,
weights=args.weights,
algorithm=args.algorithm,
p=args.p,
)
case "enet":
classifier = SGDClassifier(
random_state=args.seed,
loss="log_loss",
penalty="elasticnet",
l1_ratio=args.l1_ratio,
alpha=args.alpha,
)
start = time()
# train
classifier.fit(X=X_train, y=y_train)
acc_train = accuracy_score(y_true=y_train, y_pred=classifier.predict(X_train))
log_loss_train = log_loss(y_true=y_train, y_pred=classifier.predict_proba(X_train))
# val
acc_val = accuracy_score(y_true=y_val, y_pred=classifier.predict(X_val))
log_loss_val = log_loss(y_true=y_val, y_pred=classifier.predict_proba(X_val))
sub_acc_val = subject_accuracy(
subject_ids=datasets["subject_ids_val"]
if args.path2featurizer
else datasets["labels_val"]["Sub_ID"],
y_pred=classifier.predict_proba(X_val)[:, 1],
y_true=y_val,
from_logits=False,
)
if args.use_wandb:
elapse = time() - start
log = {
"acc_train": acc_train,
"acc_val": acc_val,
"log_loss_train": log_loss_train,
"log_loss_val": log_loss_val,
"acc_subject_val": sub_acc_val,
"elapse": elapse,
}
wandb.log(
log,
step=1,
)
if args.test_time:
test_res = {
"pred_probs": classifier.predict_proba(X_test)[:, 1],
"targets": y_test,
"labels": datasets["labels_test"],
"metadata": datasets["metadata_test"],
}
(
subjects_pred,
subjects_true,
subjects_scores,
) = secondary_metrics_subjects_get_inputs(
y_pred=test_res["pred_probs"],
y_true=y_test,
subject_ids=datasets["metadata_test"]["subject_id"],
)
log = {
"test_loss": log_loss(
y_true=y_test, y_pred=classifier.predict_proba(X_test)
),
"test_acc": accuracy_score(
y_true=y_test, y_pred=classifier.predict(X_test)
),
"test_acc_subjects": subject_accuracy(
subject_ids=datasets["metadata_test"]["subject_id"],
y_pred=classifier.predict_proba(X_test)[:, 1],
y_true=y_test,
from_logits=False,
),
"test_precision": precision_score(
y_true=test_res["targets"],
y_pred=np.where(test_res["pred_probs"] > 0.5, 1, 0),
),
"test_precision_subjects": precision_score(
y_true=subjects_true,
y_pred=subjects_pred,
),
"test_recall": recall_score(
y_true=test_res["targets"],
y_pred=np.where(test_res["pred_probs"] > 0.5, 1, 0),
),
"test_recall_subjects": recall_score(
y_true=subjects_true,
y_pred=subjects_pred,
),
"test_f1_score": f1_score(
y_true=test_res["targets"],
y_pred=np.where(test_res["pred_probs"] > 0.5, 1, 0),
),
"test_f1_subjects": f1_score(
y_true=subjects_true,
y_pred=subjects_pred,
),
"test_auroc": roc_auc_score(
y_true=test_res["targets"], y_score=test_res["pred_probs"]
),
"test_auroc_subjects": roc_auc_score(
y_true=subjects_true, y_score=subjects_scores
),
}
if args.use_wandb:
wandb.log(
log,
step=1,
)
with open(os.path.join(args.output_dir, "test_results.json"), "w") as file:
json.dump(log, file)
if args.save_test_model_outputs:
with open(
os.path.join(args.output_dir, "test_model_outputs.pkl"), "wb"
) as file:
pickle.dump(test_res, file)
print(
f"Test accuracy: {log['test_acc']:.03f} \t"
f"log-loss: {log['test_loss']:.03f}\t"
f"accuracy_subject: {log['test_acc_subjects']:.03f}"
)
elapse = time() - start
print(f"Elapse: {elapse:.02f}s")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# training configuration
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--seed", type=int, default=1234)
parser.add_argument(
"--path2featurizer",
type=str,
required=False,
help="path to directory where pre-trainer featurizer is stored",
)
parser.add_argument(
"--reuse_stats",
action="store_true",
help="reuse previously computed stats from either training or "
"pre-training set for features scaling",
)
# dataset configuration
parser.add_argument(
"--dataset",
type=str,
required=True,
help="path to directory where preprocessed dataset is stored",
)
parser.add_argument(
"--split_mode",
type=int,
default=0,
choices=[0, 1],
help="criterion for train/val/test split:"
"0) time-split: each session is split into 70:15:15 along the temporal "
"dimension such that segments from different splits map to "
"different parts of the recording"
"1) subject-split: cases and controls are split into 70:15:15 "
"train/val/test such no subjects are not shared across splits",
)
# matplotlib
parser.add_argument("--save_plots", action="store_true")
parser.add_argument(
"--format", type=str, default="svg", choices=["pdf", "png", "svg"]
)
parser.add_argument("--dpi", type=int, default=120)
# misc
parser.add_argument("--verbose", type=int, default=1, choices=[0, 1, 2])
parser.add_argument("--clear_output_dir", action="store_true")
parser.add_argument(
"--device", type=str, default=None, choices=["cpu", "cuda", "mps"]
)
parser.add_argument(
"--num_workers", type=int, default=2, help="number of workers for DataLoader"
)
parser.add_argument("--batch_size", type=int, default=256)
parser.add_argument("--use_wandb", action="store_true")
parser.add_argument("--wandb_group", type=str, default="")
parser.add_argument(
"--save_test_model_outputs", action="store_true", help="save test set outputs"
)
parser.add_argument(
"--test_time", action="store_true", help="perform inference on test set"
)
parser.add_argument(
"--learner", type=str, default=None, choices=["xgboost", "svm", "knn", "enet"]
)
temp_args = parser.parse_known_args()[0]
match temp_args.learner:
case "xgboost":
# XGBoost config
parser.add_argument("--learning_rate", type=float, default=0.001)
parser.add_argument("--subsample", type=float, default=0.1)
parser.add_argument("--colsample_bytree", type=float, default=0.1)
parser.add_argument("--reg_alpha", type=float, default=0.0)
parser.add_argument("--reg_lambda", type=float, default=0.0)
parser.add_argument("--min_child_weight", type=float, default=0.01)
parser.add_argument("--gamma", type=float, default=0.0)
parser.add_argument("--n_estimators", type=int, default=5)
parser.add_argument("--max_depth", type=int, default=3)
case "svm":
# SVC config
parser.add_argument("--C", type=float, default=0.1)
parser.add_argument("--gamma", type=float, default=0.1)
parser.add_argument("--degree", type=int, default=3)
parser.add_argument(
"--kernel",
type=str,
choices=["linear", "poly", "rbf", "sigmoid"],
default="linear",
)
case "knn":
# KNeighborsClassifier config
parser.add_argument("--n_neighbors", type=int, default=5)
parser.add_argument(
"--weights",
type=str,
choices=["uniform", "distance"],
default="uniform",
)
parser.add_argument(
"--algorithm",
type=str,
choices=["auto", "ball_tree", "kd_tree", "brute"],
default="auto",
)
parser.add_argument("--p", type=int, choices=[1, 2], default=1)
case "enet":
# SGDClassifier config
parser.add_argument("--l1_ratio", type=float, default=0.3)
parser.add_argument("--alpha", type=float, default=0.001)
del temp_args
main(parser.parse_args())